最小树形图

转载大佬博客

一、相关定义

定义:设G = (V,E)是一个有向图,它具有下述性质:

  1. G中不包含有向环; 
  2. 存在一个顶点vi,它不是任何弧的终点,而V中的其它顶点都恰好是唯一的一条弧的终点,则称 G是以vi为根的树形图。

最小树形图就是有向图G = (V, E)中以vi为根的树形图中权值和最小的那一个。

另一种说法:最小树形图,就是给有向带权图一个特殊的点root,求一棵以root为根节点的树使得该树的的总权值最小。

性质:最小树形图基于贪心和缩点的思想。

缩点:将几个点看成一个点,所有连到这几个点的边都视为连到收缩点,所有从这几个点连出的边都视为从收缩点连出

 

二、算法描述

【概述】

为了求一个图的最小树形图,①先求出最短弧集合E0;②如果E0不存在,则图的最小树形图也不存在;③如果E0存在且不具有环,则E0就是最小树形图;④如果E0存在但是存在有向环,则把这个环收缩成一个点u,形成新的图G1,然后对G1继续求其的最小树形图,直到求到图Gi,如果Gi不具有最小树形图,那么此图不存在最小树形图,如果Gi存在最小树形图,那么逐层展开,就得到了原图的最小树形图。

【实现细节】

设根结点为v0,

  • (1)求最短弧集合E0

  从所有以vi(i ≠ 0)为终点的弧中取一条最短的,若对于点i,没有入边,则不存在最小树形图,算法结束;如果能取,则得到由n个点和n-1条边组成的图G的一个子图G',这个子图的权值一定是最小的,但是不一定是一棵树。

  • (2)检查E0

  若E0没有有向环且不包含收缩点,则计算结束,E0就是图G以v0为根的最小树形图;若E0含有有向环,则转入步骤(3);若E0没有有向环,但是存在收缩点,转到步骤(4)。

  • (3)收缩G中的有向环

  把G中的环C收缩成点u,对于图G中两端都属于C的边就会被收缩掉,其他弧仍然保留,得到一个新的图G1,G1中以收缩点为终点的弧的长度要变化。变化的规则是:设点v在环C中,且环中指向v的边的权值为w,点v'不在环C中,则对于G中的每一条边<v', v>,在G1中有边<v', u>和其对应,且权值WG1(<v', u>) = WG(<v', v>) - w;对于图G中以环C中的点为起点的边<v', v>,在图G1中有边<u, v'>,则WG1(<u, v'>) = WG(<v', v>)。有一点需要注意,在这里生成的图G1可能存在重边。

  对于图G和G1:

  ①如果图G1中没有以v0为根的最小树形图,则图G也没有;

  ②如果G1中有一v0为根的最小树形图,则可按照步骤(4)的展开方法得到图G的最小树形图。

所以,应该对于图G1代到(1)中反复求其最小树形图,直到G1的最小树形图u求出。

  • (4)展开收缩点

  假设图G1的最小树形图为T1,那么T1中所有的弧都属于图G的最小树形图T。将G1的一个收缩点u展开成环C,从C中去掉与T1具有相同终点的弧,其他弧都属于T。

【小结】

对最小树形图做个小小的总结:

1:清除自环,自环是不可能存在于任何最小树形图中的;

2:求出每个顶点的的最小入边;

3:判断该图是否存在最小树形图,由 1 可以判定,或者以图中顶点v作为根节点遍历该图就能判断是否存在最小树形图;

4:找环,之后建立新图,缩点后重新标记。

【图示——最小树形图构造流程】

 

 

解读:第一幅图为原始图G,首先对于图G求其最短弧集合E0,即第二幅图G1;然后检查E0是满足条件,在这里,可以看到G1具有两个环,那么把这两个环收缩,如第三幅图所示,U1、U2分别为收缩后的点,然后将对应的权值进行更新,起点是环中的点,终点是环外的点,则权值不变。反之,起点是环外的点,终点是环内的点,则权值应该减去E0中指向环内点的权值,形成新的图,如第三幅图,对于其反复求最小树形图,直到不存在最小树形图,或者求得缩点后的图的最小树形图,然后展开就好了,如第六幅图。

如果只要求计算权值的话,则不需要展开,所有环中权值的和加上其他各个点与点之间,或者收缩点和点之间的权值就是总的权值。

三、CODE:

const int inf = 2e9;
const int maxn = 105;
const int maxm = 100050;

int n, m;                   //顶点数,边数  
int in[maxn];               //in[u]记录当前图中指向 u 结点的所有边权中最小的那条边权 
int pre[maxn];              //pre[u]记录最小边权对应的父亲结点 
int used[maxn], id[maxn];   //used是访问标记数组,id[u]是计算出 u 在下一次的新图中的编号 

struct Edge {
    int from, to;
    int dist;
    Edge(int f = 0, int t = 0, int d = 0) :from(f), to(t), dist(d) {}
}edges[maxm];//边集 

// 解决函数

int direct_mst(int root, int V, int E) {        //三个参数分别是根结点,顶点数量,边数量 
    int ans = 0;
         //为每个非根结点选出最小入边 
    while (1) {                           
        for (int i = 0; i < V; ++i) 
            in[i] = inf;
        
        for (int i = 0; i < E; ++i) {
            int u = edges[i].from;
            int v = edges[i].to;
            if (in[v] > edges[i].dist && u != v) {
                in[v] = edges[i].dist;
                pre[v] = u;
            }
        }
        //判断连通性,如有不可达结点说明无解
        
        for (int i = 0; i < V; ++i) {
            if (i == root) continue;
            if (inf == in[i]) return -1;
        }

        //判断有向环是否存在,存在有向环就缩圈
        
        int cnt = 0;                            //生成新图的结点编号
        memset(id, -1, sizeof(id));             // id[u]==-1 表示结点 u 还不属于任何一个自环 
        memset(used, -1, sizeof(used));
        in[root] = 0;
        for (int i = 0; i < V; ++i) {
            ans += in[i];
            int v = i;
            //每个结点不断向上寻找父亲结点,要么找到根结点,要么形成一个自环 
            
            while (used[v] != i && id[v] == -1 && v != root) {
                used[v] = i;
                v = pre[v];
            }
            //当 used[v]==i 的时候代表找到了自环,进行缩点,更新id数组 
            
            if (v != root && id[v] == -1) {
                for (int u = pre[v]; u != v; u = pre[u])
                    id[u] = cnt;
                id[v] = cnt++;
            }
        }

        if (0 == cnt) break;//没有自环说明已经求出最终结果

        //建立新图
        
        //先把不在自环中的点的编号更新  

        for (int i = 0; i < V; i++)
            if (id[i] == -1) id[i] = cnt++;
            
        for (int i = 0; i < E; i++) {
            int u = edges[i].from;
            int v = edges[i].to;
            edges[i].from = id[u];
            edges[i].to = id[v];
            if (id[u] != id[v]) 
                edges[i].dist -= in[v];
            //这里id[u] != id[v]说明  edges[i]这条边原来不在有向环中,
            //如果这条边指向了有向环,那么它的边权就要减少  in[v] 等价于整个环的边权减去in[v]
            //而如果没有指向有向环,说明它与这个有向环毫无关系,那么在之前的寻找自环缩点过
            //程中已经把这条边的权值加上了,所以这里避免重复计算让这条边的权值减小in[v]变为0 
        }
        V = cnt;
        root = id[root];
    }
    return ans;
}

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值