中科院自动化所夏令营面试
文章目录
- 中科院自动化所夏令营面试
- 面试流程(10-15min)
- 注意
- 1.自我介绍
- 2.英文对话
- 3.数学问题(知乎搜面试经验)
- 高数
- 线代
- 概率论与数理统计
- 复变函数
- 机器学习
- 4.科研竞赛介绍
- 5.唠家常和开放性问题
自我介绍:本人21级某c2人工智能专业大学生,24年参加自动化所夏令营面试获得offer,有什么问题可以在评论区询问我
面试流程(10-15min)
- 中文自我介绍
- 2-3个数学问题
- 1-2个随机的英文问题
- 简历里面的个人爱好、科研竞赛经历等(只要是老师感兴趣的,都会问到,甚至会问你为什么喜欢敲代码、玩魔方)
- 其他问题
注意
中科院自动化所夏令营相对其他高校保研夏令营来说很简单,只有面试(最近几年应该都是这样),因此面试要格外注意,毕竟只能通过面试来筛人,在面试中,不会时就说不会,不要不懂装懂或者回答
1.自我介绍
强烈建议中文(教育处老师说的),1min左右,要背熟,流畅的说出来
注意:
- 科研竞赛从重要->次重要说明
- 兴趣爱好可以根据时间选择性说明
各位老师早上(下午)好:
很荣幸能够参加今天的面试!
我叫xxx,来自xxx,现就读于xxx大学xxx专业。
在课程学习方面,我的综合成绩xxx,位列第xxx,曾获xxx奖学金、xxx奖学金、校级优秀学生。
在科研竞赛方面,我曾主导xxx项目和xxx项目,也曾参与xxx项目,我的文献阅读与调研、代码撰写、独立解决问题等许多能力都得到了提升。我曾参与xxx比赛,获得xx国家二等奖、xx国家一等奖。同时我也曾参与x次xx竞赛、x次xx竞赛,获得省奖x项、校奖x项。
此外,我连续三年担班级xx(班委),目前是中共预备党员,我也参加了许多志愿服务活动,培养了团队精神,促进了全面发展。
(学习之余我比较喜欢阅读xx类型书籍和打xx球,我也比较喜欢xx乐器,曾获x级证书。)
我的主要研究兴趣是xxx,我的优势是扎实全面的数学、编程水平和机器学习、深度学习基础。自动化所浓厚的学术氛围一直为人称道,我非常希望能够成为这里的一名学生。
我的介绍到此结束,感谢各位老师的倾听。
2.英文对话
我被问的是 介绍一下你的项目 和 介绍一下你的大学
词汇积累:
The Institute of Automation 自动化所
Chinese Academy of Sciences 中国科学院
coding 写代码
make bold attempts 做大胆的尝试
cultivate my independent character 培养我的独立的性格
1.介绍一下你的优缺点(What are your advantages and disadvantages?)
Thank you for your question. About my advantages, I think I am a self-disciplined, conscientious and diligent person. Additionally, I have strong team spirit and good management skill. Last, I am full of curiosity about new knowledge and things, and I like to explore the frontier knowledge of artificial intelligence.
About my disadvantages, as I am an active and motivated person, in my usual study and some scientific research projects, even though there may be some time before the deadline, I still want to finish them quickly. So the quality of the completed tasks may not be very high.
2.介绍自己的爱好(what is your hobby?)
Thank you for your question. In my spare time, I enjoy reading science fiction books and playing table tennis. Reading science fiction allows me to imagine the universe and makes me have a deeper understanding of the world. When I am reading science fiction, I easily forget the troubles and difficulties. I also love playing table tennis, because table tennis combines mental and physical abilities, which is very appealing. Sometimes I play table tennis with my friends and enjoy the sweat and happiness.
3.介绍你最喜欢的一本书、一句话(what is your favorite novel/sentence/saying?)
novel/book
Thank you for your question. My favorite book is The Three-body problem. Reading this book makes me forget my unhappiness, and it also makes me have a deeper understanding of humanity and the universe. One of my favorite sentences in the book is "Make time for civilization, for civilization won't make time", which tells about the relationship between civilization and time. These words change my attitude towards life. We should take life seriously and live a colorful life.
sentence
Thank you for your question. My favorite sentence is "Make time for civilization, for civilization won't make time" which is from The Three-body problem, a famous science fiction book. This sentence tells about the relationship between civilization and time and these words change my attitude towards life. We should take life seriously and live a colorful life. Whenever I remember this sentence, I will forget my troubles and difficulties and throw all my enthusiasm into life.
4.你最喜欢的一部电影?(what is your favorite movie/film?)
Thank you for your question. My favorite movie is "The Wandering Earth",which is a Chinese science fiction film. It shows how people try to save the Earth from the Sun. The movie has great special effects and an interesting story. It also makes people think about important ideas like bravery and hope. overall, "The Wandering Earth" is a wonderful science fiction movie that sets a new standard for Chinese cinema.
5.介绍你的家乡(Please introduce your hometown)
自行发挥
6.学校介绍(Tell some about your university.)
自行发挥
7.介绍一下你的家庭(Please introduce your family)
自行发挥
8.如何应对压力?(how to relax yourself?/ How to handle stress in life?)
Thank you for your question. When I'm feeling stressed, I will take various methods to deal with the pressure. First of all, I try to figure out what's causing the stress and promptly adjust my own state to adapt to the situation. Furthermore, I will take breaks and do things I enjoy, like running, playing pingpong or reading science fiction books. Additionally, I also get enough sleep and eat well to deal with the pressure.
Through these measures, my stress will be reduced a lot.
9.为什么要来自动化所读书?
Thank you for your question. The instituition of Automation has long been prasied for its academic atmosphere. There are many excellent teachers and scientisits. And I think I can learn a lot and improve my scientific reasearch abilities. Furthermore, the artificial intelligence of the Institute of Automation is fabulous in our country and I like to explore the frontier knowledge. So I really want to be a student here. That's all.
10.你为什么喜欢xx?(询问兴趣爱好)
Thank you for your question. Hulusi is called cucurbit flute in English. Cucurbit flute is a traditional Chinese musical instrument. Even though it seems to be a easy musical instrument, it can make a soft and beautiful sound. In my spare time, I like playing cucurbit flute, which can make me forget my unhappiness and troubles and relieve my pressure. When I feel bored, I also like playing the cucurbit flute to fill my life.
问题听不懂,请老师重复一遍(不要瞎答)
I’m sorry,could you repeat the question?
Could you please speak louder? Sorry I cannot hear clearly.
问题不理解,大方承认
Sorry,I am little acquainted with the aspect of this question. But I wish I can have a chance to learn more deeply about this under your direction.
3.数学问题(知乎搜面试经验)
我被问的是 连续的定义 和 零点存在定理
(3个)更多是考验对数学公式数学概念的理解(最好能描述清楚几何意义)
参考学习链接:cs 保研经验贴 | 数学试题 · 自动化所特供版
高数
(1)初等函数定义
幂函数、指数函数、对数函数、三角函数、反三角函数、与常数经过有限次的有理运算(加、减、乘、除、有理次乘方),及有限次函数复合的函数,并且能用一个解析式表示。
(2)反函数存在的条件
定义域和值域一一映射
⭐(3)二次积分和二重积分的区别和联系
二重积分:二元函数在一个二维区域上的积分(例如,求曲顶柱体体积)
二次积分:两次单变量积分,就是平常计算时,一个变量一个变量积分
联系:可以相互转化
⭐(4)Green公式,Gauss公式、Stokes公式,条件,关联
- 格林公式:建立了平面上沿闭曲线L对坐标的第二型线积分与曲线L所围成闭区域D上的二重积分之间的关系,方便使用二重积分来求解第二型线积分
(物理意义:边界上的环量等于区域内部旋度的二重积分)
环量:向量场A沿闭曲线的第二型线积分
旋度:环量密度最大的方向 rot A = ▽×A
▽是向量微分算子
- 高斯公式:建立了分片光滑闭曲面S的第二面积分与曲面S所围成的有界闭区域V的三重积分之间的关系,方便使用三重积分来求解第二型面积分
(物理意义:曲面的通量等于区域内部散度的积分)
散度:向量场在该处的通量密度div A = ▽·A
- 斯托克斯公式:建立了沿空间闭曲线C的第二型线积分与C上所张曲面的第二型面积分之间的关系,方便相互转化求解,一般更多的用来求第二型线积分
(物理意义:边界上的环量等于区域内部旋度的第二型面积分)
(5)数列和函数极限
数列极限:
存在a,对于任意给定正数ε,存在正整数N,使得任意n>N时,恒有不等式|an-a|<ε,则an→a(n→∞)
函数极限:
存在a,对于任意给定正数ε,存在正数X,使得任意x>X时,恒有不等式|f(x)-a|<ε,则f(x)→a(x→∞)
存在a,对于任意给定正数ε,存在正数δ,使得当0<|x1-x0|<δ时,恒有不等式|f(x)-a|<ε,则f(x)→a (x→x0)
⭐(6)连续、可导/可微
连续:
某点连续——在x0的邻域内有定义,且该点x0对应的极限值=函数值
函数连续——每个点都连续
一致连续:
对区间I上任意两点x1 x2,对任意ε>0,存在δ >0,使得|x1-x2|<δ → |f(x1)-f(x2)|<ε,区间上连续等价于一致连续
可微:
设f(x)在x0的某邻域内有定义,若有f(x0+Δx)-f(x0)=AΔx+ο(Δx),A是与Δx无关的常数,则f在x0处可微,AΔx为f在x0处的微分
可导:
设f(x)在x0的某邻域内有定义,lim Δy/Δx = a 存在,那么f在x0处可导,且a是导数
可导和可微的关系:
可微一定可导、可导一定可微
可导一定连续、连续不一定可导
(6)如何求带条件的极值,Lagrange乘数法
- z=f(x,y) 当 φ(x,y)=0 时的极值,构造 lagrange 函数 L(x,y,λ) = f(x,y) + λφ(x,y)。
- 求 L 的驻点,即 x y λ 偏导数 = 0,即得。
⭐(7)微分中值定理
闭区间[a,b]连续,开区间(a,b)可导
罗尔定理: f(a)=f(b) 则 f’(ξ)=0
拉格朗日定理: f’(ξ) = (f(b)-f(a)) / (b-a)
柯西定理:f’(ξ)/g’(ξ) = (f(b)-f(a)) / (g(b)-g(a)) (对任意x∈(a,b),g‘(x)≠0)
区别:
- 罗尔中值定理要求两个值相等f(a)=f(b)
- 柯西中值定理涉及两个函数,要求分母不为0
联系:
-
拉格朗日中值定理是柯西中值定理的一般情况
-
罗尔中值定理是拉格朗日中值定理的一般情况,当f(a)=f(b)
柯西中值定理的几何意义:以g(x)为横坐标,f(x)为纵坐标,在该区间对应的曲线上存在一点对应的切线平行于两个端点的连线(拉格朗日就简单了,将x作为横坐标)
(8)泰勒展开
piano 余项:o[(x-x0)^n] 是 (x-x0)^n 的高阶无穷小
lagrange 余项
(9)牛顿迭代法
(10)凹凸函数
几何理解:函数f(x)在区间I上连续,若对I中任意两点x1和x2,曲线f(x)上相应的弧段P1P2始终位于弦P1P2的下(上)方,则函数图像是凹(凸)的(函数是凸(凹)函数)
代数理解:二阶导大于0,函数曲线是凹的,但是函数是凸函数;反之二阶导小于0,函数曲线是凸的,但是函数是凹函数
另一种代数理解:凸函数(函数图像为凹的)定义f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y) 其中α(0 ≤ α ≤ 1)
(11)无穷小
当x→x0(x→∞)时,以0为极限的函数α(x)称为当x→x0(x→∞)时的无穷小量
高阶/低阶无穷小
同阶无穷小/k阶无穷小
⭐(12)黎曼积分
通过对函数在一系列小区间上的近似值求和,然后让区间长度无限趋小,从而得到函数在整个区间上的精确积分值
⭐(13)梯度
最大的方向导数(方向导数:某一点在某一趋近方向上的导数值)
线代
⭐(1)向量空间/线性空间
一个n维非空向量的集合里定义了向量加法和数乘运算,集合对加法和数乘封闭,并且满足8条运算法则
加法:交换律、结合律、零元、逆元
乘法:数乘结合律、单位元、两个分配律(数相加和向量相加)
⭐(2)矩阵的秩
定义:矩阵的秩就是矩阵中不等于0的子式的最高阶数
矩阵的k阶子式:在矩阵中任取k行k列组成的行列式,行列要相等
求解方法:将矩阵进行行变换得到的行阶梯型矩阵,秩为其非零行的行数
与向量组的关系:矩阵的秩等于它列向量组的秩,也等于它行向量组的秩
向量组的秩:向量组的极大线性无关组所含向量的个数
与线性方程组解的关系(Ax=b的解的各种情况):
如果系数矩阵的秩等于增广矩阵的秩,并且这个秩等于方程组变量的个数,那么方程有唯一解(可以用x=A^(-1)b来求解);
如果系数矩阵的秩等于增广矩阵的秩,但这个秩r小于方程组变量的个数n,方程组就有无穷多解,且每个基础解系都含有n-r个解向量,(解的情况为k1 * ε1+k2 * ε2+kn-r * εn-r + η);
如果系数矩阵的秩不等于即小于增广矩阵的秩,那么方程组无解
如果系数矩阵的秩大于方程组变量的个数,那么方程组无解
Ax=b的求解的方法:
无数解——特解(Ax=b,自由列取0其余怎么好算怎么取) + 矩阵A的零空间的基础解系的线性组合
(3)行列式
所有取自不同行不同列的n个元乘积的代数和,有n!项
几何意义:行列式中的行或列向量所构成的超平行多面体的有向面积或有向体积
⭐(4)线性相关与线性无关
定义:设α1,α2,…,αm都为n个向量,若存在一组不完全为0的k1,k2,…,km使得k1α1+k2α2+…+kmαm=0,则称向量组α1,α2,…,αm线性相关,否则,称向量组α1,α2,…,αm线性无关
几何意义:n个向量线性无关——等价于——他们所张成的n维体体积不为0
极大线性无关组:在某线性空间中,拥有向量个数最多的 线性无关向量组
(5)矩阵的特征值与特征向量
矩阵的特征值:设A是n阶方阵,若数λ和n维非零列向量x,使得Ax = λx成立,则称λ是方阵A的一个特征值,x为方阵A的对应于特征值λ的一个特征向量
应用:PCA主成分分析
特征值和特征向量的关系:
[1]一个特征值可能对应多个特征向量,一个特征向量只能属于一个特征值
[2]属于不同特征值的特征向量一定线性无关
[3]设λ是n阶方阵A的一个k重特征值(λ为特征方程的k重根),对应于λ的线性无关的特征向量的最大个数为I,则k≥I,即特征值λ的代数重数不小于几何重数
矩阵的迹trace:
定义:矩阵A对角元素之和
矩阵的迹 等于 特征值之和
⭐矩阵对角化的条件:
定义1:方阵A对角化充要条件为A有n个线性无关的特征向量
定义2:n个不同的特征值,如果有k重特征值,那么该特征值可以有k个不同的特征向量
定义3:若存在可逆矩阵S,使得S^{-1}AS为对角矩阵,则称为矩阵A是可对角化的
矩阵的特征值分解:
A=QΣQ^{-1} Σ是对角阵,Q是特征列向量组成的矩阵
⭐(6)矩阵的初等变换
用一非零的数乘以某一行/列,把一行/列的倍数加到另一行/列,互换两行/列的位置
矩阵的恒等变换:变换矩阵为单位阵
(7)奇异矩阵
行列式=0的方阵,非满秩
(8)伴随矩阵
n阶方阵A中元素aij的代数余子式Aij按转置方式排成的n阶方阵
A^{-1} = A* / |A|
(9)正交矩阵
AA^{T} = A^{T}A = I 并且A为实方阵
(10)矩阵的等价、相似、合同
等价:秩相等,矩阵之间可以经过初等变换得到,则等价
相似:存在可逆矩阵P,使得P^{-1}AP=B,则A和B相似
合同:存在可逆矩阵P,使得P^{T}AP=B,则A和B合同
(11)Hessian矩阵和Jacobian矩阵
Hessian矩阵——多元标量函数的二阶微分
Jacobian 矩阵——向量函数对向量微分
(12)施密特正交化
求欧氏空间标准正交基
从欧氏空间任意线性无关的向量组α1,α2,……,αm出发,求得正交向量组β1,β2,……,βm,使由α1,α2,……,αm与向量组β1,β2,……,βm等价,再将正交向量组中每个向量经过单位化,就得到一个标准正交向量组,这种方法称为施密特正交化
⭐(13)线性变换
两个线性空间的变换,对于线性空间V1和V2,对任意向量α,β,任意元素k,两个线性变换和k都在同一数域下,有T(α+β)=Tα+Tβ和T(kα)=kT(α),则称T为线性空间V1到V2的线性变换
⭐(14)全等变换
不改变图形形状、大小的几何变换,包括平移、旋转、轴对称
概率论与数理统计
⭐(1)联合概率分布函数、边缘概率分布函数、条件概率分布函数
联合概率分布函数:(X,Y)是二维随机变量,F (x,y) = P (X≤x,Y≤y)
边缘概率分布函数:(X,Y)是二维随机变量,F_ {X}(x) = F(x,∞), F_ {Y} (y) = F(∞,y)
条件概率分布函数:(X,Y)是二维随机变量,P(X|Y) = P(X,Y)/P(Y)
已知x和y的分布函数,如何得到联合分布函数:独立的随机变量概率分布相乘,不独立的话就考虑具体情况(去掉一些不可能的联合分布)
已知联合分布函数,如何得到边缘分布函数:积分或求和
(2)随机变量独立与相关
独立性:随机变量之间的概率分布不受其他随机变量的影响
相关性:随机变量之间的线性关系
独立一定不相关,但是不相关不一定独立(比如X和X^2没有线性关系,不相关,但是显然不独立)
⭐(3)大数定律(切比雪夫、伯努利、辛钦)
当样本数据无限大时:
一列独立变量(可以不同分布)的均值收敛到一个常数,样本均值→总体均值(切比雪夫,条件为期望方差存在且有限)
事件A发生的频率→概率(伯努利)
一列独立同分布的随机变量的均值收敛到一个常数,样本均值→数学期望(辛钦,条件为分布的期望存在且有限)
(4)中心极限定理
当样本量n趋于无穷大时,n个抽样样本的均值的频数,逐渐趋于正态分布N(μ,σ^{2}/n)
(5)协方差&相关系数
协方差:两随机变量线性相关性的强度
Conv(X,Y)=E[X-E(X)]E[Y-E(Y)]
相关系数:归一化(不受变量尺度的影响)
Corr(X,Y)=Conv(X,Y)/sqrt(D(X)*D(Y))
Corr = 0 则不相关
- 协方差/相关系数=0但仍然不独立:Y=X^2
(6)泊松分布:
离散型随机变量:
泊松分布适合于描述单位时间内随机事件发生的次数
(7)二项分布:
离散型随机变量,n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。n 次试验中事件 A 恰好发生 k 次,这个离散概率分布
⭐(8)参数估计:
定义:用样本统计量去估计总体的参数
三个性质(评价估计量的标准):
无偏性:估计出来的参数的数学期望等于被估计参数的真实值
有效性:看估计量的方差值,方差代表波动,波动越小越有效
参数估计方法:点估计(矩估计、极大似然估计)&区间估计
点估计:根据样本构造一个统计量,用它来估计未知参数
矩估计原理:用样本k阶矩作为总体k阶矩的估计量
极大似然估计:构建L(θ,x1,x2,…,xn)=p(x1;θ)p(x2;θ)…p(xn;θ),取令lnL(θ)最大的θ值
如果存在一个参数值,使得似然函数值达到最大的话,那么这个值就是该项参数最为“合理”的参数值
区间估计:在推断总体参数时,还要估计出总体参数的一个区间,并同时给出总体参数落在这一区间的概率的保证(即置信水平和置信区间)
(9)三大抽样分布函数:
卡方分布/t分布/F分布
⭐(10)概率密度函数和它的性质:
随机变量取某个值的概率微小增量
性质:非负、积分为1
复变函数
(1)解析、解析函数、奇点
函数在某点解析:如果在 z0 及 z0 的邻域里处处可导,则在 z0 解析。
解析函数:如果在区域 D 上处处解析,则是解析函数。
某点解析 => 某点可导,区域解析 <=> 区域可导
孤立奇点:f(z)在z0不解析,但在z0的某一去心邻域0<|z-z0|<δ内解析
孤立奇点分为可去奇点、简单极点、m阶极点、本性奇点
可去奇点:函数在z0处的罗朗级数展开式没有负指数项
简单极点:函数在z0处的罗朗级数展开式只有一项负指数项
m阶极点:函数在z0处的罗朗级数展开式有m项负指数项
-1 — -m
本性奇点: 函数在z0处的罗朗级数展开式有无限项负指数项
(2)柯西黎曼条件
某点可导充要条件:f = u + iv,该点u和v可微,且偏导数满足C-R方程(ux = vy,uy = -vx)
区域可导充要条件:区域内u和v可微,且偏导数满足C-R方程
(3)柯西积分定理
解析函数积分与路径无关,环路积分=0
(4)留数定理
机器学习
(1)距离度量方式
欧式距离:向量的真实距离(L2范数)
曼哈顿距离:坐标各个值之间距离和(L1范数)
马氏距离:在欧几里得距离的基础上加上协方差矩阵
余弦距离:余弦相似度cos(x,y) = x·y / |x||y|
相关系数:Corr(X,Y)=Conv(X,Y)/sqrt(D(X)*D(Y))
(2)SVD分解和PCA
SVD分解:非方阵的矩阵的分解
PCA:对数据的协方差矩阵进行SVD分解,根据特征值大小,取前r列特征向量和特征值,用列特征向量进行降维
(3)马尔可夫性、马尔可夫过程、马尔科夫链
马尔可夫性:给定现在状态及所有过去状态,其未来状态的条件概率分布仅依赖于当前状态,与过去状态(即该过程的历史路径)无关
马尔科夫过程:具有马尔科夫性质的过程
时间、状态都是离散的马尔科夫过程称为马尔可夫链
(4)支持向量机
二分类技术,分类超平面跟两类数据的间隔要尽可能大(即远离两边数据)
先将数据变成线性可分的,再构造出最优分类超平面;通过选择一个核函数 K ,将低维非线性数据映射到高维空间中
(5)循环神经网络RNN、LSTM、TCN
LSTM(长短时记忆网络):解决RNN的不适用于长期记忆的问题
[1]引入"门运算",遗忘门、输入门、输出门
[2]引入"门运算",将梯度中的累乘变为累加,解决梯度消失问题
TCN(时间卷积网络):解决RNN只能串行计算的问题,TCN可以并行所有时间步的数据,而RNN必须按序处理,使得TCN在处理长时序列时更加高效
4.科研竞赛介绍
根据自己情况自行准备,竞赛科研自己做的部分一定要搞清楚,在面试前可以再温习一遍,实话实说就可以
5.唠家常和开放性问题
【1】为什么想来自所读书?
因为中科院自动化所的人工智能在全国范围内都是数一数二的,自所相比其他高校能够提供更加好的学术和科研氛围,而且在这里能够和众多AI领域的科学家与研究者进行深入沟通和交流,我感觉在自所继续研究生的生涯是一件很快乐、很幸福的事情
【2】为什么想要读研究生?
我对AI尤其是CV、具身智能、多模态、机器学习都比较感兴趣,而且在大学期间我所学习的专业课、做的课程项目、科研竞赛项目使我深刻体会到我的知识储备比较浅显和宽泛,我认为研究生的学习能够进一步增加我的知识储备,学习我热爱的方向,所以我想继续深造,平衡自己专业知识的深度和广度
【3】夏令营还投递了哪些学校?
跟老师实话实说,除了自动化所外,我报名两所院校的夏令营,但是这些我并没有入营。自动化所一直是我梦想的地方,自动化所的浓厚的学术氛围一直为人称道,我十分希望之后能够来这里继续深造
【4】研究生的规划是什么?
对于研究生的规划,我希望在研究生期间能够提升自己的科研水平,同时能够进一步强化专业知识,产出更多优秀的学术成果,争取在个人的研究领域有所建树。同时,我也希望能够进一步加强我的团队合作能力、创新能力、时间管理能力等各方面的能力
【5】你觉得自己是怎么样的人?
我认为自己是一个对新知识新事物充满好奇心的人,喜欢探索AI前沿知识;我认为自己也是一个自律认真勤奋的人,我大学期间的专业课多门都取得了优异的成绩;我也认为自己是一个具有团队合作精神、乐于助人的人,我连续三年担任了xx班委,积极帮助班级中需要帮助的同学,帮他们解决学习生活上的问题
【6】我们的电梯为什么要设计为单双层停靠?这样设计有什么好处?
(1)避免拥挤,有针对性的将人流量分开
(2)减少等待时间,更利于交通
【7】著名的机器人公司
宇树、达闼、智元、小米、百度