【图像分割】Image Segmentation 综述

Image Segmentation(图像分割)网络结构比较

网络名作者父辈生辰简述增加的结构丢弃的结构优势劣势
VGG16FCN的灵感来源
FCNJ.LongVGG162014图像分割鼻祖一个Deconv层(从无到有)所有fc层简单粗糙
DeconvNetH.NohFCN2015Unpooling层(从无到有)、多个Deconv层(层数增加)、fc层(从无到有)
SegNetVijay BadrinarayananDeconvNet2016每个max_pooling的max索引所有fc层
DeepLabFCN
PSPNet
Mask-RCNN2017真正做到像素级

Image Segmentation(图像分割)族谱

FCN

  • DeepLab
  • DeconvNet
    • SegNet
  • PSPNet
  • Mask-RCNN

按分割目的划分

  • 普通分割

    将不同分属不同物体的像素区域分开。
    如前景与后景分割开,狗的区域与猫的区域、背景分割开。

  • 语义分割

    在普通分割的基础上,分类出每一块区域的语义(即这块区域是什么物体)。
    如把画面中的所有物体都指出它们各自的类别。

  • 实例分割

    在语义分割的基础上,给每个物体编号。
    如这个是该画面中的狗A,那个是画面中的狗B。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值