leetcode: 72. Edit Distance

Problem

# Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2.
# (each operation is counted as 1 step.)
#
# You have the following 3 operations permitted on a word:
#
# a) Insert a character
# b) Delete a character
# c) Replace a character

Idea 1

From [LeetCode] Edit Distance

思路:

很多算法教科书上都有的经典二维DP问题。

1. 状态:
DP[i+1][j+1]:word1[0:i] -> word2[0:j]的edit distance。

2. 通项公式:
考虑word1[0:i] -> word2[0:j]的最后一次edit。无非题目中给出的三种方式:

a) 插入一个字符:word1[0:i] -> word2[0:j-1],然后在word1[0:i]后插入word2[j]
DP[i+1][j+1] = DP[i+1][j]+1

b) 删除一个字符:word1[0:i-1] -> word2[0:j],然后删除word1[i]
DP[i+1][j+1] = DP[i][j+1]+1

c) 替换一个字符:word1[0:i-1] -> word2[0:j-1]
word1[i] != word2[j]时,word1[i] -> word2[j]:DP[i+1][j+1] = DP[i][j] + 1
word1[i] == word2[j]时:DP[i+1][j+1] = DP[i][j] 

所以min editor distance应该为:
DP[i+1][j+1] = min(DP[i][j] + k, DP[i+1][j]+1, DP[i][j+1]+1) 
word1[i]==word2[j] -> k = 0, 否则k = 1

3. 计算方向:
replace (i, j)      delete (i, j+1)
insert (i+1, j)    (i+1, j+1)

可见要求DP[i+1][j+1],必须要知道二维矩阵中左上,上方和下方的3个值。所以当我们确定第0行和第0列的值后,就可以从上到下、从左到右的计算了。

4. 起始、边界值
DP[0][i] = i: word1为空,要转化到word2[0:i-1],需要添加i个字符。
DP[i][0] = i: word2为空,要从word1转化到空字符串,需要删除i个字符。

Idea 2

From [LeetCode] Edit Distance 编辑距离

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。
根据以往的经验,对于字符串相关的题目十有八九都是用动态规划Dynamic Programming来解,这道题也不例外。

跟以往的DP题目类似,难点还是在于找出递推式。

这道题我们需要维护一个二维的数组dp,其中dp[i][j]表示从word1的前i个字符转换到word2的前j个字符所需要的步骤。

比如word1是“bbc”,word2是”abcd“,那么我们可以得到dp数组如下:

  Ø a b c d
Ø 0 1 2 3 4
b 1 1 1 2 3
b 2 2 1 2 3
c 3 3 2 1 2

我们通过观察可以发现,当word1[i] == word2[j]时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j]是其左,左上,上的三个值中的最小值加1,那么可以得到递推式为:

if word1[i - 1] == word2[j - 1]:
    dp[i][j] = dp[i - 1][j - 1]                                                                   
else:
    dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            

AC

class Solution():
    def minDistance(self, word1, word2):
        distance = [[i] for i in range(len(word1) + 1)]
        distance[0] = [j for j in range(len(word2) + 1)]
        for i in range(1, len(word1) + 1):
            for j in range(1, len(word2) + 1):
                insert = distance[i][j - 1] + 1
                delete = distance[i - 1][j] + 1
                replace = distance[i - 1][j - 1] if word1[i - 1] == word2[j - 1] else distance[i - 1][j - 1] + 1
                distance[i].append(min(insert, delete, replace))
        return distance[-1][-1]


# Time:  O(n * m)
# Space: O(n + m)
class Solution():
    def minDistance(self, word1, word2):
        if len(word1) < len(word2):
            return self.minDistance(word2, word1)
        distance = [i for i in range(len(word2) + 1)]
        for i in range(1, len(word1) + 1):
            pre_distance_i_j = distance[0]
            distance[0] = i
            for j in range(1, len(word2) + 1):
                insert = distance[j - 1] + 1
                delete = distance[j] + 1
                replace = pre_distance_i_j
                if word1[i - 1] != word2[j - 1]:
                    replace += 1
                pre_distance_i_j = distance[j]
                distance[j] = min(insert, delete, replace)
        return distance[-1]


if __name__ == "__main__":
    assert Solution().minDistance("Rabbit", "Racket") == 3
    assert Solution().minDistance("Rabbit", "Rabbt") == 1
    assert Solution().minDistance("Rabbit", "Rabbitt") == 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值