【深度学习】正则化(regularization)

Introduction

正则化,regularization,也即 约束 。是防止过拟合的诸多手段之一,很常用。
常命名为 weight loss ,或 decay loss

通过 限制 参数值域空间,显式地 控制了 模型复杂度,从而避免了过拟合。

假设待正则的网络层参数为 ω \omega ω (omega) ,通用表达为: ∣ ∣ ω ∣ ∣ k = x 1 k + x 2 k + x 3 k k || \omega ||_{k} = \sqrt[k]{x^k_1 + x^k_2 + x^k_3} ∣∣ωk=kx1k+x2k+x3k

正则类型约束公式一阶导特性最终药效
L1正则化 λ ∥ ω ∥ 1 = λ N ∑ i N ∣ ω i ∣ \lambda\Vert{\omega}\Vert_1 = \frac{\lambda}{N} \sum_{i}^N |{\omega_i}| λω1=NλiNωi λ ⋅ s i g n ( ω ) \lambda\cdot sign(\omega) λsign(ω)绝对值的导数不连续,不好求导。
梯度都是 − λ -\lambda λ λ \lambda λ,逐步将不重要的特征都置0。
网络较稀疏,大量的0值
L2正则化 λ 2 ∥ ω ∥ 2 2 = λ 2 N ∑ i N ω i 2 \frac{\lambda}{2}\Vert{\omega}\Vert^2_2 = \frac{\lambda}{2N} \sum_{i}^N {\omega_i}^2 2λω22=2NλiNωi2 λ ⋅ ω \lambda\cdot \omega λω常用,好求导。
对大数和离群点更敏感,梯度越靠近0就越小。
基本都是很靠近0的小数

正则化手段

正则化手段包括了:
L1正则化、L2正则化、Elastic网络正则化、最大范数约束、随机失活、使用验证集。

L1正则化

l 1 = λ ∣ ∣ ω ∣ ∣ 1 = ∑ i ∣ ω i ∣ l_{1} = \lambda || \omega ||_{1} = \sum_{i} | \omega_{i} | l1=λ∣∣ω1=iωi

λ \lambda λ :取值越大,则对模型复杂度的 约束程度 越大。

L2正则化

深度学习中机器学习中
L2正则化 的 别名权重衰减 (weight decay)岭回归 (ridge regression)

l 2 = 1 2 λ ∣ ∣ ω ∣ ∣ 2 2 l_{2} = \frac{1}{2} \lambda || \omega ||_{2}^{2} l2=21λ∣∣ω22

Note

  • 现在正则化一般用L2正则化,因为其便于求导,从而方便优化;
  • L1正则化求导不易,大家一般不用。

Elastic网络正则化

Elastic网络正则化 = L1正则化 + L2正则化

功效
L1正则化约束参数量级 + 稀疏化参数(可以造就更多的0值)
L2正则化(只能)约束参数量级

l E l a s t i c = l 1 + l 2 = λ 1 ∣ ∣ ω ∣ ∣ 1 + λ 2 ∣ ∣ ω ∣ ∣ 2 2 l_{Elastic} = l_{1} + l_{2} = \lambda_{1} || \omega ||_{1} + \lambda_{2} || \omega ||_{2}^{2} lElastic=l1+l2=λ1∣∣ω1+λ2∣∣ω22

最大范数约束

最大范数约束,max norm constraints,通过 向 参数量级的范数 设置上限,从而正则化 (即 约束) 模型复杂度。

∣ ∣ ω ∣ ∣ 2 < c || \omega ||_{2} < c ∣∣ω2<c

c c c:一般取 1 0 3 ∼ 1 0 4 10^3 \sim 10^4 103104 数量级。

随机失活

随机失活,dropout,2012年于AlexNet中被提出。

Note :

  • 只针对 全连接层 进行操作;
  • 训练阶段和测试阶段的操作不同。

训练阶段

按概率p 随机 将神经元 置 0 [如下(b)图],以 缓解 神经元之间 隐形的协同适应,从而达到降低模型复杂度的目的:
这里写图片描述

别看dropout之后的网络只是原网络的一个 子网络 ,复杂度不比原网络。但由于每个神经元的dropout是 随机dropout,因此每一轮都相当于在一个 新的 子网络上训练。那么最终得到的模型便是 无数个 子网络 共同训练 的成果,效果自然会更好。

然后麻烦也来了,训练阶段的每个神经元要事先添加一道概率流程:
这里写图片描述

对应的公式变化如下如下:

  • 没有dropout的神经网络:
    这里写图片描述

  • 有dropout的神经网络:
    这里写图片描述

Tensorflow 中的 dropout API 如下:

tf.nn.dropout

其中,根据 keep_prob参数项 随机进行 dropout 。

# coding=utf-8

import tensorflow as tf
import numpy as np

inputs = np.random.uniform(-10, 10, size=[3, 3])
features = tf.placeholder_with_default(input=inputs, shape=[3, 3])

# 随机失活
output_dropout = tf.nn.dropout(features, keep_prob=0.5)

with tf.Session() as sess:
    print '\nfeatures :\n', sess.run(features)
    print '\n----------\n'
    print '\ndropout :\n', sess.run(output_dropout)
features :
[[ 0.53874537 -3.09047282 -2.88714205]
 [-1.92602402 -1.56025457  3.64309646]
 [-9.13147387  8.37367913 -7.9849204 ]]

----------

dropout :
[[  0.          -6.18094565  -5.77428411]
 [ -0.          -3.12050914   7.28619293]
 [-18.26294775  16.74735827  -0.        ]]

测试阶段

所有 神经元均呈 激活态,但其权重 需乘上 p p p 以保证各权重能有和 训练阶段 相同的 期望值
这里写图片描述

使用验证集

具体见:深度学习: 验证集 & 测试集 区别


[1] 理解dropout

  • 5
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值