粗糙超立方体学习笔记 (1)

本文介绍了粗糙集理论在决策信息系统中的应用,探讨了论域、属性集、等价类、下近似与上近似的概念,以及如何通过这些概念来近似表示不能精确划分的目标集合,提供了一种度量粗糙集精度的方法。
摘要由CSDN通过智能技术生成
决策信息系统 S=(U,A,V,f)

U论域(Universe),指的是所有研究对象或实体的集合,更具体地说是一个非空有限对象集,包含了被考虑的所有元素,这些元素可以是人、事件、物品或任何其他具体或抽象的实体。在粗糙集理论中,论域提供了研究和分析的对象集合的基础。

A是非空有限属性集A=C\cup D,其中C是条件属性集,由那些用来描述对象或实例特征的属性组成,反映了对象的特征或状态;D是决策属性集,由那些反应对象决策结果或分类的属性组成,指明了对象属于哪个类别或应该如何决策。

V属性值的集合V=\bigcup_{a\in A}V_aV_a是属性a的值域,对于每个属性而言,它包含该属性可能取得的所有值。

f:U\times A\rightarrow V是一个信息函数\forall a\in A, x\in U,f(x,a)\in V_a

表格1
病人头疼肌肉疼体温流感
e_1正常
e_2
e_3很高
e_4正常
e_5
e_6很高

在以上表格中,U是6个病人组成的集合,C是三种属性头疼、肌肉疼、体温构成的集合,D是是否患流感的属性。

等价类

等价类[a]X中等价于a的所有元素形成的子集 [a]=\{x\in X|x\sim a\}

商集X/\simX中所有元素的等价类组成的集合。

不可分辨关系(粗糙集中的等价类与等价关系)

论域中的不可分辨关系(Indiscernibility Relation)是粗糙集理论中的基本概念之一。对于论域U中的两个元素xy,在属性集A中的所有属性对于这两个元素来说都有相同的值,则称xy是不可分辨(indiscernible)的。形式化定义如下:对于任意P\in A

\mathrm{IND}(P)=\{(x,y)\in U^2|\forall a\in P,f(x,a)=f(y,a)\}

这样的关系\mathrm{IND}(P)被称作P-不可分辨关系,此关系可将论域划分为U/\mathrm{IND(P)},由等价关系\mathrm{IND}(P)形成的等价类[x]_P=\{y|(x,y)\in R_B\}是粗糙集理论中的基本知识粒

粗糙集(Rough Set)的定义

X\subseteq U为我们希望用属性子集P来表示的目标集合,即我们希望使用属性子集P引导的等价类来表示这个类别。通常情况下,X不能被精确表示,因为集合可能包含在属性P的基础上无法区分的对像。

表格2
ObjectP_1P_2P_3P_4P_5
O_112011
O_212011
O_320010
O_400121
O_521021
O_600122
O_720010
O_801221
O_921022
O_{10}20010

以表格2为例,考虑目标集合X=\{O_1,O_2,O_3,O_4\},属性子集是P=\{P_1,P_2,P_3,P_4,P_5\},则集合X不能被精确表示,因为在[x]_P中,对象\{O_3,O_7,O_{10}\}是不可辨识的。因此,没有办法代表任何包含O_3而排除O_7O_{10}的集合X

然而,目标集合X可以用P中包含的信息来近似表示,通过构建P-下近似(P-lower approximation)和P-上近似(P-upper approximation)来实现:

\underline{P}X=\{x|[x]_P\subseteq X\}

\overline{P}X=\{x|[x]_P\cap X\neq \varnothing \}

下近似和上近似;正域、负域和边界域;粗糙集的定义

P-下近似(P-lower approximation),或称正域(positive region),是目标集合X在等价类[x]_P中所有子集的并集。在刚才的例子中,\underline{P}X=\{O_1,O_2\}\cup\{O_4\},这是两个等价类,且都被目标集合X所包含。下近似就是U/P中可以肯定被分类为目标集合X中的完整对象集。

P-上近似(P-upper approximation),是等价类[x]_P中,与目标集合X有非空交集的集合的并集。在例子中,\overline{P}X=\{O_1,O_2\}\cup\{O_4\}\cup\{O_3,O_7,O_{10}\},是三个等价类的并集。上近似就是U/P中不能肯定被分类为目标集合X的补集\overline{X}的对象集。于是集合U-\overline{P}X表示负域(negative region),包含了肯定不属于目标集合X的对象集。

边界域(boundary region)是由上近似和下近似的差给出,即\overline{P}X-\overline{P}X

由下近似和上近似组成的元组\left \langle \underline{P}X,\overline{P}X \right \rangle称为粗糙集(rough set),粗糙集所表示的集合X准确度(accuracy)可以由以下式子给出:\alpha _P(X)=\frac{\underline{P}X}{\overline{P}X},其值在0到1之间,是可以肯定在X中的对象数量与可能在X中的对象数量的比率,提供了粗糙集近似目标集合程度的度量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值