决策信息系统
是论域(Universe),指的是所有研究对象或实体的集合,更具体地说是一个非空有限对象集,包含了被考虑的所有元素,这些元素可以是人、事件、物品或任何其他具体或抽象的实体。在粗糙集理论中,论域提供了研究和分析的对象集合的基础。
是非空有限属性集,,其中是条件属性集,由那些用来描述对象或实例特征的属性组成,反映了对象的特征或状态;是决策属性集,由那些反应对象决策结果或分类的属性组成,指明了对象属于哪个类别或应该如何决策。
是属性值的集合,,是属性a的值域,对于每个属性而言,它包含该属性可能取得的所有值。
是一个信息函数,。
病人 | 头疼 | 肌肉疼 | 体温 | 流感 |
---|---|---|---|---|
是 | 是 | 正常 | 否 | |
是 | 是 | 高 | 是 | |
是 | 是 | 很高 | 是 | |
否 | 是 | 正常 | 否 | |
否 | 否 | 高 | 否 | |
否 | 是 | 很高 | 是 |
在以上表格中,是6个病人组成的集合,是三种属性头疼、肌肉疼、体温构成的集合,是是否患流感的属性。
等价类
等价类:中等价于的所有元素形成的子集
商集:中所有元素的等价类组成的集合。
不可分辨关系(粗糙集中的等价类与等价关系)
论域中的不可分辨关系(Indiscernibility Relation)是粗糙集理论中的基本概念之一。对于论域中的两个元素和,在属性集中的所有属性对于这两个元素来说都有相同的值,则称和是不可分辨(indiscernible)的。形式化定义如下:对于任意,
这样的关系被称作P-不可分辨关系,此关系可将论域划分为,由等价关系形成的等价类是粗糙集理论中的基本知识粒。
粗糙集(Rough Set)的定义
令为我们希望用属性子集来表示的目标集合,即我们希望使用属性子集引导的等价类来表示这个类别。通常情况下,不能被精确表示,因为集合可能包含在属性的基础上无法区分的对像。
Object | |||||
1 | 2 | 0 | 1 | 1 | |
1 | 2 | 0 | 1 | 1 | |
2 | 0 | 0 | 1 | 0 | |
0 | 0 | 1 | 2 | 1 | |
2 | 1 | 0 | 2 | 1 | |
0 | 0 | 1 | 2 | 2 | |
2 | 0 | 0 | 1 | 0 | |
0 | 1 | 2 | 2 | 1 | |
2 | 1 | 0 | 2 | 2 | |
2 | 0 | 0 | 1 | 0 |
以表格2为例,考虑目标集合,属性子集是,则集合不能被精确表示,因为在中,对象是不可辨识的。因此,没有办法代表任何包含而排除和的集合。
然而,目标集合可以用中包含的信息来近似表示,通过构建P-下近似(P-lower approximation)和P-上近似(P-upper approximation)来实现:
下近似和上近似;正域、负域和边界域;粗糙集的定义
P-下近似(P-lower approximation),或称正域(positive region),是目标集合在等价类中所有子集的并集。在刚才的例子中,,这是两个等价类,且都被目标集合所包含。下近似就是中可以肯定被分类为目标集合中的完整对象集。
P-上近似(P-upper approximation),是等价类中,与目标集合有非空交集的集合的并集。在例子中,,是三个等价类的并集。上近似就是中不能肯定被分类为目标集合的补集的对象集。于是集合表示负域(negative region),包含了肯定不属于目标集合的对象集。
边界域(boundary region)是由上近似和下近似的差给出,即。
由下近似和上近似组成的元组称为粗糙集(rough set),粗糙集所表示的集合的准确度(accuracy)可以由以下式子给出:,其值在0到1之间,是可以肯定在中的对象数量与可能在中的对象数量的比率,提供了粗糙集近似目标集合程度的度量。