下面补充一些粗糙超立方体需要用到的粗糙集概念。
属性依赖性(attribute dependency)
属性依赖性衡量了一个属性集合(一般是决策属性集)在知道另一个属性集合(一般是条件属性集)的情况下可以被多好地预测或确定。这种依赖性可以用一个数值来表示,范围是从0到1,通过考虑在条件属性集下的正域(positive region)与论域(universe of discourse)的大小之比来计算的。
属性依赖性的计算如下:
其中,表示有属性集引导的第个等价类。
属性的显著性(significance of attribute)
对于条件属性集中的属性,其显著性被定义为
相减的两项,前者表示全部条件属性集对决策属性集的预测质量,后者表示排除属性后剩余的属性对决策属性集的预测质量。这个差值越大,说明属性对分类结果的贡献越大。