粗糙超立方体学习笔记(2)

下面补充一些粗糙超立方体需要用到的粗糙集概念。

属性依赖性(attribute dependency)

属性依赖性衡量了一个属性集合(一般是决策属性集D)在知道另一个属性集合(一般是条件属性集C)的情况下可以被多好地预测或确定。这种依赖性可以用一个数值来表示,范围是从0到1,通过考虑在条件属性集下的正域(positive region)与论域(universe of discourse)的大小之比来计算的。

属性依赖性的计算如下:\gamma _C(D)=\frac{|POS_C(D)|}{|U|}

其中POS_C(D)=\bigcup_{i} \underline{C}X_iX_i表示有属性集D引导的第i个等价类。

属性的显著性(significance of attribute)

对于条件属性集中的属性\mathrm{A}\in C,其显著性被定义为\sigma _C(D,A)=\gamma_C(D)-\gamma_{C-\{A\}}(D)

相减的两项,前者表示全部条件属性集C对决策属性集D的预测质量,后者表示排除属性A后剩余的属性对决策属性集D的预测质量。这个差值越大,说明属性A对分类结果的贡献越大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值