7-5 矩阵列平移

给定一个 n×n 的整数矩阵。对任一给定的正整数 k<n,我们将矩阵的偶数列的元素整体向下依次平移 1、……、k、1、……、k、…… 个位置,平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一行元素的和。

输入格式:

输入第一行给出 3 个正整数:n(<100)、k(<n)、x(<100),分别如题面所述。

接下来 n 行,每行给出 n 个不超过 100 的正整数,为矩阵元素的值。数字间以空格分隔。

输出格式:

在一行中输出平移后第 1 到 n 行元素的和。数字间以 1 个空格分隔,行首尾不得有多余空格。

输入样例:

7 2 99
11 87 23 67 20 75 89
37 94 27 91 63 50 11
44 38 50 26 40 26 24
73 85 63 28 62 18 68
15 83 27 97 88 25 43
23 78 98 20 30 81 99
77 36 48 59 25 34 22

输出样例:

440 399 369 421 302 386 428

样例解读

需要平移的是第 2、4、6 列。给定 k=2,应该将这三列顺次整体向下平移 1、2、1 位(如果有更多列,就应该按照 1、2、1、2 …… 这个规律顺次向下平移),顶端的空位用 99 来填充。平移后的矩阵变成:

11 99 23 99 20 99 89
37 87 27 99 63 75 11
44 94 50 67 40 50 24
73 38 63 91 62 26 68
15 85 27 26 88 18 43
23 83 98 28 30 25 99
77 78 48 97 25 81 22

思路:

按要求输入二维矩阵;

k可能是1,2,3……n-1这些范围的数,比如k=3时,我们就得按照1,2,3,1,2,3,1,2,3,……这种规律进行移动。

代码:

#include <iostream>
#define MAX 100
using namespace std;

int main()
{
    int array[MAX][MAX];
    int n, k, x;
    cin >> n >> k >> x;

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++) {
            cin >> array[i][j];
        }
    }

    int temp = 1;
    for (int i = 2; i <= n; i += 2) {
        for (int j = n; j > temp; j--) {
            array[j][i] = array[j - temp][i];
        }

        for (int j = 1; j <= temp; j++) {
            array[j][i] = x;
        }

        temp++;
        if (temp > k) {
            temp = 1;
        }
    }

    int sum = 0;
    for (int i = 1; i <= n; i++) {
        sum = 0;
        for (int j = 1; j <= n; j++) {
            sum += array[i][j];
        }
        
        if (i == 1) {
            cout << sum;
        }
        else {
            cout << " " << sum;
        }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值