给定一个 n×n 的整数矩阵。对任一给定的正整数 k<n,我们将矩阵的偶数列的元素整体向下依次平移 1、……、k、1、……、k、…… 个位置,平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一行元素的和。
输入格式:
输入第一行给出 3 个正整数:n(<100)、k(<n)、x(<100),分别如题面所述。
接下来 n 行,每行给出 n 个不超过 100 的正整数,为矩阵元素的值。数字间以空格分隔。
输出格式:
在一行中输出平移后第 1 到 n 行元素的和。数字间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
7 2 99
11 87 23 67 20 75 89
37 94 27 91 63 50 11
44 38 50 26 40 26 24
73 85 63 28 62 18 68
15 83 27 97 88 25 43
23 78 98 20 30 81 99
77 36 48 59 25 34 22
输出样例:
440 399 369 421 302 386 428
样例解读
需要平移的是第 2、4、6 列。给定 k=2,应该将这三列顺次整体向下平移 1、2、1 位(如果有更多列,就应该按照 1、2、1、2 …… 这个规律顺次向下平移),顶端的空位用 99 来填充。平移后的矩阵变成:
11 99 23 99 20 99 89
37 87 27 99 63 75 11
44 94 50 67 40 50 24
73 38 63 91 62 26 68
15 85 27 26 88 18 43
23 83 98 28 30 25 99
77 78 48 97 25 81 22
思路:
按要求输入二维矩阵;
k可能是1,2,3……n-1这些范围的数,比如k=3时,我们就得按照1,2,3,1,2,3,1,2,3,……这种规律进行移动。
代码:
#include <iostream>
#define MAX 100
using namespace std;
int main()
{
int array[MAX][MAX];
int n, k, x;
cin >> n >> k >> x;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
cin >> array[i][j];
}
}
int temp = 1;
for (int i = 2; i <= n; i += 2) {
for (int j = n; j > temp; j--) {
array[j][i] = array[j - temp][i];
}
for (int j = 1; j <= temp; j++) {
array[j][i] = x;
}
temp++;
if (temp > k) {
temp = 1;
}
}
int sum = 0;
for (int i = 1; i <= n; i++) {
sum = 0;
for (int j = 1; j <= n; j++) {
sum += array[i][j];
}
if (i == 1) {
cout << sum;
}
else {
cout << " " << sum;
}
}
return 0;
}