论文笔记 | 利用Argument信息以及Attention机制提升事件检测的效果

本文探讨如何利用Argument信息改善事件检测效果,通过引入Supervised Attention机制,结合Context Representation Learning,提升模型对触发词Trigger和事件元素Argument的理解。实验表明,这种方法能有效提高事件检测的准确性。
摘要由CSDN通过智能技术生成

原论文:Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanism

原论文的著作权属于中科院自动化所,本文只针对原论文进行了学习及记录。

1. 前言

众所周知,在ACE 2005的语料库中,每一个事件都由事件触发词Trigger和事件元素Argument组成,在目前的研究中,针对事件检测任务,各个研究小组都没有充分的利用数据集,他们更多地依赖句子的语义信息直接进行事件检测,而几乎没有使用到已经被标注好的Argument信息。

本文中,研究人员提出,Argument信息能够对Trigger的识别和分类起到积极作用,并通过实验验证了他们的想法。

举个例子:Mohamad fired Anwar, his former protege, in 1998

上面的例子中,fired是一个触发词,但是这个触发词可能代表两个事件类型,一个是Attack, 另一个是 End-Position, 那么到底应该将这个事件归为哪一个类呢?如果我们看到 former protege(Role = Position) 这个argument,我们就能知道这多半是一个 End-position 事件。

2. 模型

整体上来说,该模型是一个多分类模型,将句子中的每一个token(之后会详细叙述此概念)当作是Trigger Candidate,最后输出对于每个Candidate 的分类情况(33个事件类型再加上一个NA Type)。

那么,一个句子中的Token是什么呢,或者说Trigger Candidate 具体是什么样子的呢?我们将每一个单词与其上下文单词信息、上下文实体信息一起结合,组成针对这个单词的Trigger Candidate。下图展示了本文模型的整体结构,这个模型分成两个部分:(1) Context Representation Learning (CRL),是在Trigger Candidate向量化表示的基础上,利用有监督的注意力机制进一步提取其中的有效信息;(2) Event Detector,是包含一个输入层,一个隐含层和一个Softmax层的神经网络。

图1 模型结构

2.1 Context Representation Learning

为了准备CRL,我们对每一个单词的上下文的长度进行了限制,取该单词的前后各 n2 n 2 个单词,形成一个长度为 n n 的上下文信息。之前提到过,上下文信息包括两部分,上下文单词信息以及上下文实体信息,那么设当前的单词为 w 0 ,它的上下文单词信息为 Cw=[wn2,wn2+1,,w1,w1,wn21,wn2] C w = [ w − n 2 , w − n 2 + 1 , … , w − 1 , w 1 , w n 2 − 1 , w n 2 ] ,上下文实体信息即为与上下文单词相对应的实体类别(包括NA Type),表示为 Ce=[en2,en2+1,,e1,e1,en21,en2] C e = [ e − n 2 , e − n 2 + 1 , … , e − 1 , e 1 , e n 2 − 1 , e n 2 ] 。在之后的叙述之中,为了方便表示,我们将当前单词称为 w w ,将 C w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值