1122 Hamiltonian Cycle (25分)

The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V
​1
​​ V
​2
​​ … V
​n
​​

where n is the number of vertices in the list, and V
​i
​​ 's are the vertices on a path.

Output Specification:
For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.

Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO

哈密顿圈,用邻接表来存。分别用两个flag来判断这是否是个哈密顿圈
将每次问的点存在一个vector里面,也插入set中,这样可以用set去重,因为首尾是相同的,去完重后判断set大小是否和n相同且输入的点-1是否和n相同,且首尾是否相同,如果有一点不满足,就使flag1位false
for遍历每两个邻接点,如果两个邻接点没有通路,flag2设为false
两个flag都为true就输出no

#include<iostream>
#include<algorithm>
#include<vector>
#include<set>
using namespace std;
const int maxn = 210;
const int INF = 1000000000;
int G[maxn][maxn];
int main(){
    fill(G[0] , G[0] + maxn * maxn, INF);
    int n,m;
    cin>>n>>m;
    int u,v;
    for(int i = 0; i < m; i++){
        cin>>u>>v;
        G[u][v] = G[v][u] = 1;
    }
    int k, q, d;
    vector<int> vv;
    cin>>k;
    for(int i = 0; i < k; i++){
        cin>>q;
        bool flag1 = true, flag2 = true;
        set<int> s;
        vv.clear();
        for(int j = 0; j < q; j++){
            cin>>d;
            vv.push_back(d);
            s.insert(d);
        }
        if(s.size() != n||q-1 != n || vv[0] != vv[q-1]) flag1 = false;
        for(int j = 0; j < q - 1; j++){
            if(G[vv[j]][vv[j+1]] == INF) flag2 = false;
        }
        if(flag1 && flag2) cout<<"YES\n";
        else cout<<"NO\n";
    }
    return 0;
}

用set去重,但是set会自动排序,这条路就和原来不一样了,所以还是最后得靠vector。

//判断相邻两个点之间是否连通;判断点集的个数和n是否相等;加入到set中,看看无重复点的个数是否和n相等
#include<iostream>
#include<set>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 205;
const int INF = 1000000000;
int G[maxn][maxn];
int main(){
    fill(G[0],G[0] + maxn * maxn,INF);
    int n,m;
    cin>>n>>m;
    int u,v;
    for(int i = 0; i < m; i++){
        cin>>u>>v;
        G[u][v] = 1;
        G[v][u] = 1;
    }
    int q,k,dian;
    cin>>q;
    for(int i = 0; i < q; i++){
        cin>>k;
        set<int> s;
        vector<int> v;
        for(int j = 0; j < k; j++){
            cin>>dian;
            s.insert(dian);
            v.push_back(dian);
        }
        bool flag = true;
        for(int j = 1; j < k; j++){
            if(G[v[j]][v[j-1]] != 1) flag = false;
        }
        if(s.size() != n || v[0] != v[k-1] || k-1 != n) flag = false;
        if(flag) cout<<"YES\n";
        else cout<<"NO\n";
    }
    return 0;
}
### 回答1: 7-1哈密顿回路是指一条经过图中所有顶点恰好一次的回路。在图论中,哈密顿回路是一个经典问题,其求解难度较大。对于一些特殊的图,如完全图和正则图,哈密顿回路的存在性已经得到了证明。但对于一般的图,目前还没有有效的算法可以在多项式时间内求解。 ### 回答2: 7-1 Hamiltonian cycle是指一个无向图中,经过每个点恰好一次的简单路径,称之为Hamiltonian cycle。如果一个无向图有Hamiltonian cycle,那么它就是一个Hamiltonian图。 Hamiltonian cycle问题是研究如何确定一个无向图中是否存在Hamiltonian cycle的问题,寻找这个问题的答案是计算机科学领域的一个重要课题。 目前,还没有发现一个可以解决所有情况的通用算法,这导致了这个问题的很多变种研究,例如,求解Hamiltonian路径和Hamiltonian环的问题,寻找最长、最短的Hamiltonian路径等等。此外,这个问题也引起了很多数学家的研究兴趣,他们试图证明这个问题的正确性。 虽然寻找一个图的Hamiltonian cycle问题是一个非常困难的问题,但已经被证明,当满足一定条件时,这个问题是可以在多项式时间内解决的。这个问题的关键在于如何确定判断是否存在Hamiltonian cycle的特征。 在实际应用中,Hamiltonian cycle问题与路线和规划问题有很大关联。例如,对于一些必须经过所有节点的计算机网络或路线规划问题,Hamiltonian cycle问题可以有效地应用于设计最优的路线方案。 总之,7-1 Hamiltonian cycle问题是一个非常重要的计算机科学问题,虽然该问题没有通用的解决方案,但已经有很多专家致力于解决这个问题,相信在未来,我们会找到更有效、更高效的算法来解决这个问题。 ### 回答3: 哈密顿回路是指一条经过图中每个顶点并且仅经过一次的闭合路径,其名称来源于爱尔兰数学家和物理学家威廉·哈密顿。这个概念是 NP 难问题之一,因此在复杂性理论的研究中受到广泛的关注。 在数学上,我们可以用一个图论的视角来理解哈密顿回路的概念。一个图是由一组顶点和它们之间的边构成的数学对象。如果一个图中存在一条经过所有顶点的路径,则称该图具有哈密顿路径。如果这条路径是闭合的,也就是说路径的最后一个顶点与第一个顶点相连,则称该图具有哈密顿回路。哈密顿回路是所有哈密顿路径的一类特殊情形,因为它可以被看作是一个哈密顿路径的起点和终点相同的特殊图。 从实际应用的角度来看,哈密顿回路的限制条件使其具有很高的计算复杂度。因为必须遍历到每个顶点,而且顶点只能经过一次,因此尝试找到一个图的哈密顿回路相当困难。实际上,对于一些有着特定的性质的图,哈密顿回路的存在问题可以使用一些算法解决。然而,对于大多数图而言,哈密顿回路的问题依然是难以解决的 NP 难问题。这种限制性质使得哈密顿回路成为了复杂性理论的重要研究领域之一。 总之,哈密顿回路是图论中的一个经典深度问题,其限制性质使得在实际应用中非常困难。然而,在理论研究中,在寻找哈密顿回路问题上的努力有助于对计算复杂度的理解和解决 NP 难问题提供新的视角和新的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值