Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization

本文提出了一种新的低比特深度神经网络量化方法,通过随机量化策略减少量化误差。与现有方法不同,该方法不是按权重大小量化,而是依据量化误差选择。文章探讨了四种量化方案,并发现线性函数作为最简单的策略,效果接近其他复杂策略。实验表明,随机量化优于确定性量化,可能由于其正则化效应。此外,作者研究了量化比例的增加策略,发现在指数递增方案下性能最佳。这种方法对于防止过拟合和优化小型网络表现有效。
摘要由CSDN通过智能技术生成

本文提出了一种使用随机算法量化网络的方法。

它的思路类似INQ,都是将权重划分为被量化的和全精度部分,然后逐次增加量化的比例,直到百分百。不同之处在于量化权重的选取:INQ是按照从大到小的顺序进行量化,而本文则根据量化误差的大小选取:
在这里插入图片描述
这里Wi是某通道权重的全精度值,Qi是其量化后的值。作者定义一个函数:在这里插入图片描述
作者依据该函数提出了四种量化方案:
1:量化概率为1/m,m为权重的通道数。
2:线性函数在这里插入图片描述
3:softmax函数在这里插入图片描述
4:sigmoid函数在这里插入图片描述
作者发现这四种方法的结果差不多,但因为线性函数最简单,所以认为它的效果最好。作者对这种现象的看法是,重要的是随机划分算法,而不是指

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值