简单的线性回归

这篇博客介绍了机器学习的两种基本类型:有监督学习和无监督学习。有监督学习涉及预先知道答案的数据,而无监督学习则需要模型自己发现模式。线性回归作为有监督学习的一种,利用代价函数评估模型拟合度,并通过梯度下降法寻找最佳参数。文中还提到了多元线性回归,即处理多个输入特征的情况。为了优化模型,特征通常会被归一化到-1到1之间。
摘要由CSDN通过智能技术生成

机器学习的分类

有监督学习和无监督学习
有监督学习:提前知道答案
无监督学习:不知道答案,自己找答案

线性回归简单的一元回归

其中Cost function市代价函数,用来评价线性回归函数的拟合度。

梯度下降法

主要用来寻找最佳参数
在这里插入图片描述
其中图片中的阿尔法是学习率,他主要是用来决定在每一步接近最佳解时走的步长。
在这里插入图片描述
在这里插入图片描述

多元线性回归

在原来一个X的基础上上升到了多个X
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
尽量要把特征的值缩到-1<=x<=1之间,这里采用均值归一化处理(x-均值)/(最大值-最小值)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值