考虑到在日常中,常常需要对模型指标输出,但涉及多个模型的时候,需要对其有标示输出,故需要将模型变量名转换成字符串。看到的基本方法有两种:
一、方法层面:
方法1(函数内推荐):
def namestr(obj, namespace):
return [name for name in namespace if namespace[name] is obj]
print(namestr(lr_origin,globals()),'\n',
namestr(lr_origin,globals())[0])
输出:‘lr_origin’
方法2:
import inspect, re
def varname(p):
for line in inspect.getframeinfo(inspect.currentframe().f_back)[3]:
m = re.search(r'\bvarname\s*\(\s*([A-Za-z_][A-Za-z0-9_]*)\s*\)', line)
if m:
return m.group(1)
varname(lr_origin)
输出:
'lr_origin'
二、示例
采用方法1
def small_feature_model(model,X_train=X_train,y_train=y_train,X_test=X_test, y_test=y_test):
pca = PCA(n_components=150,random_state=0,whiten=True)
pipeline = Pipeline([('scale',StandardScaler()),('pca',pca)])
processing = pipeline.fit(X_train)
X_train = processing.transform(X_train)
X_test = processing.transform(X_test)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# print(namestr(model,globals()))
print('**small-%s的准确率**: %.3f' %(namestr(model,globals())[0],accuracy_score(y_pred=y_pred, y_true=y_test)))
small_feature_model(svm_origin)
输出
['svm_origin']
**small-svm_origin的准确率**: 0.789
for model in [svm_origin, svm_rbf, lr_origin]:
small_feature_model(model)
输出
**small-svm_origin的准确率**: 0.789
**small-svm_rbf的准确率**: 0.811
**small-lr_origin的准确率**: 0.835
采用方法2
def small_feature_model(model,X_train=X_train,y_train=y_train,X_test=X_test, y_test=y_test):
pca = PCA(n_components=150,random_state=0,whiten=True)
pipeline = Pipeline([('scale',StandardScaler()),('pca',pca)])
processing = pipeline.fit(X_train)
X_train = processing.transform(X_train)
X_test = processing.transform(X_test)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# print(namestr(model,globals()))
print('**small-%s的准确率**: %.3f' %(varname(model),accuracy_score(y_pred=y_pred, y_true=y_test)))
small_feature_model(svm_origin)
输出
**small-model的准确率**: 0.789
for model in [svm_origin, svm_rbf, lr_origin]:
small_feature_model(model)
输出
**small-model的准确率**: 0.789
**small-model的准确率**: 0.811
**small-model的准确率**: 0.835
参考