keras中训练好的模型保存与载入

本文介绍了如何在Keras中使用Sequential模式构建深度神经网络(DNN),并详细阐述了模型的保存与重新加载的过程,以实现模型持久化。

keras中的采用Sequential模式建立DNN并持久化保持、重新载入


def DNN_base_v1(X_train, y_train):
    
    model = models.Sequential()
    model.add(layers.Dense(96, activation='elu',kernel_regularizer=regularizers.l2(0.005), input_shape=(X_train.shape[1], )))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(64, activation='elu',kernel_regularizer=regularizers.l2(0.005)))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(32, activation='elu',kernel_regularizer=regularizers.l2(0.005)))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(32, activation='elu',kernel_regularizer=regularizers.l2(0.005)))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(1, activation='sigmoid'))

    model.compile(optimizer=optimizers.Adadelta(), loss='binary_crossentropy', metrics=['accuracy'])

    model.fit(X_train, y_train, epochs=1200, batch_size=50, validation_split=0.2, verbose=0, shuffle=True)
    results_train = model.eval
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值