使用改进鲸鱼算法的深度学习极限学习机进行数据预测——附matlab代码
在实际应用中,数据预测对于许多领域来说都是十分重要的。因此,如何高效地进行数据预测就成为了一个研究热点。在本文中,我们将介绍一种基于改进的鲸鱼算法的深度学习极限学习机(ELM)来进行数据预测的方法,并且提供相应的matlab代码。
ELM是一种单层前向神经网络,它通过随机初始化隐藏层神经元的权值和阈值来快速地求解输出权值,具有快速学习速度和良好的泛化性能。但是,传统的ELM算法还存在一些问题,比如处理非线性数据时准确率不高等。因此,我们采用了改进的鲸鱼算法来进一步优化传统的ELM算法。
改进的鲸鱼算法是一种基于自然界中鲸鱼活动特征的优化算法。该算法在鲸鱼的迁徙、觅食以及社交行为中提取出一些特殊的算法,并将其应用于优化问题中。相比于其他优化算法,改进的鲸鱼算法具有更好的全局搜索能力和更快的收敛速度。
我们将改进的鲸鱼算法应用于ELM预测模型中,并且以国外某城市的温度数据为例进行了实验验证。实验结果表明,采用改进的鲸鱼算法的ELM模型在处理非线性数据时具有更高的准确率和更好的稳定性。
下面提供附带相关参数的matlab代码(注意:由于该算法运行过程需要耗费一定时间,请耐心等待程序运行完毕):
% dat