全连接神经网络分类器(上) 图像表示 1. 多层感知器 2. 激活函数 小结 3. SOFTMAX与交叉熵 4. 对比交叉熵损失与支撑向量机损失 5. 计算图与反向传播 图像表示 直接使用原始像素作为特征,展开为列向量 一般分类器均使用此类表示 1. 多层感知器 线性分类器 全连接神经网络:全连接神经网络级联多个变化来实现输入到输出的映射。 全连接神经网络的权值 全连接神经网络与线性不可分: 线性可分: 线性不可分: 全连接神经网络绘制与命名