Doris 的向量化执行能力与其 分布式架构 和 复杂查询优化 深度结合,通过 批处理 + 列式计算 + 分布式调度 的协同设计,解决传统分布式数据库在复杂查询场景下的性能瓶颈。以下是具体原理展开:
一、向量化如何适配分布式架构?
Doris 的分布式架构(MPP)天然依赖数据分片和并行计算,而向量化通过以下机制与其深度协同:
1. 数据分片与批处理的结合
-
数据分片存储:数据按分区、分桶规则分布在不同节点,每个分片(Tablet)内部数据按列存储。
-
向量化批处理单元:每个节点在处理分片数据时,以固定大小的数据块(如4096行)为单位加载到内存,按列批量处理。
-
优势:
-
减少跨节点网络传输次数(批量传输代替逐行传输)。
-
单节点内利用 CPU 缓存局部性,减少内存随机访问。
-
2. 分布式任务的向量化调度
-
Pipeline 并行执行:将查询拆分为多个阶段(Scan、Filter、Join、Aggregation),每个阶段以向量化批次为单位处理,形成流水线。