[转][C++][STL] numeric_limits的用法

From:http://www.cplusplus.com/reference/std/limits/numeric_limits/

numeric_limits

 

浮点数据精度判断

float x=0.0;

float y=0.0f;

 

if ( abs(x -y) <= numeric_limits<float>::epsilon() )

{

 ...

}

class template
<limits>

Numeric limits type

This class is specialized for each of the fundamental types, with its members returning or set to the different values that define the properties that type has in the specific platform in which it compiles.

For all the other types (non-fundamental types) a specialization of this class should not exist.

The non-specialized class is defined as:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
template <class T> class numeric_limits {
public:
  static const bool is_specialized = false;
  static T min() throw();
  static T max() throw();
  static const int  digits = 0;
  static const int  digits10 = 0;
  static const bool is_signed = false;
  static const bool is_integer = false;
  static const bool is_exact = false;
  static const int radix = 0;
  static T epsilon() throw();
  static T round_error() throw();

  static const int  min_exponent = 0;
  static const int  min_exponent10 = 0;
  static const int  max_exponent = 0;
  static const int  max_exponent10 = 0;

  static const bool has_infinity = false;
  static const bool has_quiet_NaN = false;
  static const bool has_signaling_NaN = false;
  static const float_denorm_style has_denorm = denorm absent;
  static const bool has_denorm_loss = false;
  static T infinity() throw();
  static T quiet_NaN() throw();
  static T signaling_NaN() throw();
  static T denorm_min() throw();

  static const bool is_iec559 = false;
  static const bool is_bounded = false;
  static const bool is_modulo = false;

  static const bool traps = false;
  static const bool tinyness_before = false;
  static const float_round_style round_style = round_toward_zero;
}



A specialization exists for each of the fundamental types: boolcharsigned charunsigned charwchar_tshortunsigned shortintunsigned intlongunsigned longfloatdouble and long double. These specializations define the specific values for the different static const members, and all have is_specialized defined as true.

Members

membertypeproperty
is_specializedbool true on all specializations of the type, false in the non-specialized version.
min()TMinimum finite value.
For floating types with denormalization (variable number of exponent bits): minimum positive normalized value.
Equivalent to CHAR_MINSCHAR_MINSHRT_MININT_MINLONG_MINFLT_MINDBL_MINLDBL_MIN or 0, depending on type.
max()TMaximum finite value.
Equivalent to CHAR_MAXSCHAR_MAXUCHAR_MAXSHRT_MAXUSHRT_MAXINT_MAXUINT_MAXLONG_MAXULONG_MAXFLT_MAXDBL_MAX or LDBL_MAX, depending on type.
digitsintFor integer types: number of non-sign bits (radix base digits) in the representation.
For floating types: number of digits (in radix base) in the mantissa (equivalent to FLT_MANT_DIGDBL_MANT_DIG or LDBL_MANT_DIG).
digits10intNumber of digits (in decimal base) that can be represented without change.
Equivalent to FLT_DIGDBL_DIG or LDBL_DIG for floating types.
is_signedbool true if type is signed.
is_integerbool true if type is integer.
is_exactbool true if type uses exact representations.
radixintFor integer types: base of the representation.
For floating types: base of the exponent of the representation (equivalent to FLT_RADIX).
epsilon()TMachine epsilon (the difference between 1 and the least value greater than 1 that is representable).
Equivalent to FLT_EPSILONDBL_EPSILON or LDBL_EPSILON for floating types.
round_error()TMeasure of the maximum rounding error.
min_exponentintMinimum negative integer value for the exponent that generates a normalized floating-point number.
Equivalent to FLT_MIN_EXPDBL_MIN_EXP or LDBL_MIN_EXP for floating types.
min_exponent10intMinimum negative integer value such that 10 raised to that power generates a normalized floating-point number.
Equivalent to FLT_MIN_10_EXPDBL_MIN_10_EXP or LDBL_MIN_10_EXP for floating types.
max_exponentintMaximum integer value for the exponent that generates a normalized floating-point number.
Equivalent to FLT_MAX_EXPDBL_MAX_EXP or LDBL_MAX_EXP for floating types.
max_exponent10intMaximum integer value such that 10 raised to that power generates a normalized finite floating-point number.
Equivalent to FLT_MAX_10_EXPDBL_MAX_10_EXP or LDBL_MAX_10_EXP for floating types.
has_infinitybool true if the type has a representation for positive infinity.
has_quiet_NaNbool true if the type has a representation for a quiet (non-signaling) "Not-a-Number".
has_signaling_NaNbool true if the type has a representation for a signaling "Not-a-Number".
has_denormfloat_denorm_styleDenormalized values (representations with a variable number of exponent bits). A type may have any of the following enum values:
denorm_absent, if it does not allow denormalized values.
denorm_present, if it allows denormalized values.
denorm_indeterminate, if indeterminate at compile time.
has_denorm_lossbool true if a loss of accuracy is detected as a denormalization loss, rather than an inexact result.
infinity()TRepresentation of positive infinity, if available.
quiet_NaN()TRepresentation of quiet (non-signaling) "Not-a-Number", if available.
signaling_NaN()TRepresentation of signaling "Not-a-Number", if available.
denorm_min()TMinimum positive denormalized value.
For types not allowing denormalized values: same as min().
is_iec559()T true if the type adheres to IEC-559 / IEEE-754 standard.
An IEC-559 type always has has_infinityhas_quiet_NaN and has_signaling_NaN set to true; And infinityquiet_NaN and signaling_NaN return some non-zero value.
is_boundedbool true if the set of values represented by the type is finite.
is_modulobool true if the type is modulo. A type is modulo if it is possible to add two positive numbers and have a result that wraps around to a third number that is less.
trapsbool true if trapping is implemented for the type.
tinyness_beforebool true if tinyness is detected before rounding.
round_stylefloat_round_styleRounding style. A type may have any of the following enum values:
round_toward_zero, if it rounds toward zero.
round_to_nearest, if it rounds to the nearest representable value.
round_toward_infinity, if it rounds toward infinity.
round_toward_neg_infinity, if it rounds toward negative infinity.
round_indeterminate, if the rounding style is indeterminable at compile time.

 

Example

1
2
3
4
5
6
7
8
9
10
11
12
13
14
// numeric_limits example
#include <iostream>
#include <limits>
using namespace std;

int main () {
  cout << boolalpha;
  cout << "Minimum value for int: " << numeric_limits<int>::min() << endl;
  cout << "Maximum value for int: " << numeric_limits<int>::max() << endl;
  cout << "int is signed: " << numeric_limits<int>::is_signed << endl;
  cout << "Non-sign bits in int: " << numeric_limits<int>::digits << endl;
  cout << "int has infinity: " << numeric_limits<int>::has_infinity << endl;
  return 0;
}



Possible output:


Minimum value for int: -2147483648
Maximum value for int: 2147483647
int is signed: true
Non-sign bits in int: 31
int has infinity: false

 

See also

 

 

Test:



#include <iostream> #include <cstdlib> #include <limits> #include <string> using namespace std;

int main() {     //判断各类型有无极值     cout << boolalpha;     cout << "specialized(char): "        << numeric_limits<char>::is_specialized         << endl;     cout << "specialized(wchar_t): "        << numeric_limits<wchar_t>::is_specialized         << endl;     cout << "specialized(string): "        << numeric_limits<string>::is_specialized         << endl;      cout << noboolalpha << endl;          //各个类型的最大值      cout << "max(int): "           << numeric_limits<int>::max()          << endl;     cout << "max(short): "           << numeric_limits<short>::max()          << endl;     cout << "max(unsigned int): "           << numeric_limits<unsigned int>::max()          << endl;     cout << "max(unsigned short): "           << numeric_limits<unsigned short>::max()          << endl;     cout << "max(unsigned long): "           << numeric_limits<unsigned long>::max()          << endl;     cout << "max(long): "           << numeric_limits<long>::max()          << endl;     cout << "max(long long): "           << numeric_limits<long long>::max()          << endl;     cout << "max(float): "           << numeric_limits<float>::max()          << endl;     cout << "max(double): "           << numeric_limits<double>::max()          << endl;     cout << "max(long double): "           << numeric_limits<long double>::max()          << endl;     cout << endl;                //各个类型的最小值      cout << "min(int): "           << numeric_limits<int>::min()          << endl;     cout << "min(short): "           << numeric_limits<short>::min()          << endl;     cout << "min(unsigned int): "           << numeric_limits<unsigned int>::min()          << endl;     cout << "min(unsigned short): "           << numeric_limits<unsigned short>::min()          << endl;     cout << "min(unsigned long): "           << numeric_limits<unsigned long>::min()          << endl;     cout << "min(long): "           << numeric_limits<long>::min()          << endl;     cout << "min(long long): "           << numeric_limits<long long>::min()          << endl;     cout << "min(float): "           << numeric_limits<float>::min()          << endl;     cout << "min(double): "           << numeric_limits<double>::min()          << endl;     cout << "min(long double): "           << numeric_limits<long double>::min()          << endl;          system("pause");          return 0;      }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值