Pytorch学习笔记2:梯度下降算法

本文介绍了梯度下降算法的产生背景、原理和局限性,并对比了随机梯度下降与批量梯度下降的优缺点。通过数学公式和代码示例,详细解析了梯度下降在模型训练中的应用。
摘要由CSDN通过智能技术生成

梯度下降算法(Gradient Descent):模型训练中最常用的一种算法

一.算法产生背景

1.穷举法:提前设定好参数的准确值在某个区间并以某个步长进行穷举

穷举法的思想在参数比较多,即维度比较大的情况下会产生唯独诅咒,在一个N维曲面中找一个最低点,使得原问题不可解,基于这样的情况需要进行改进

2.分治法:大化小,小化无,先对整体进行分割采样,在相对最低点进行进一步采样,直到其步长与误差符合条件

两个缺点:a.容易只找到局部最优解,而不易找到全局最优解

                  b.如果需要分的更加细致,则计算量仍巨大

由于存在以上问题,提出了参数优化,即求解使loss最小时的参数的值

二.梯度下降算法

梯度:梯度即导数变化最大的值,其方向为导数变化最大的方向

如果令\Delta x>0,则对于增函数,梯度的方向为函数上升的方向,对于减函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值