AcWing 1075. 数字转换(约数之和 + 树形dp 求树的最长路径运用)

在这里插入图片描述
在这里插入图片描述

题意

如果一个数 x 的 约数之和 y(不包括他本身)比他本身 小,那么 xy 可以 互相转换

给定一个正整数 n,求出正整数 [1,n] 集合中:在不出现重复数字的情况下,能进行的最大变换步数

思路:

1、如果一个数 x 的约数之和 y(不包括他本身)比他本身小,则 xy 连一条边,问题转化为求树的最长路径问题

2、由于任意正整数 x,的 约数之和唯一的,且本题要求只有约数之和 小于 自身才能转换,故对于所有的 x 来说,他向 小于 自己的数转换的边 至多 只有一条,那就是 x约数之和 x′(x′<x),但必须从当前树的最小的数(树根)开始向下递归

3、由于题目可能会存在多棵树,因此需要 st[] 数组标记该点是否为根节点,如为根节点则由此向下递归

4、本题由于建的图是有向的,因此无需像之前一样设置第二个参数father

5、在 nlogn 的时间复杂度内预处理出 1~n每个数的约数之和

for(int i=1; i<=n; ++i)
{
    for(int j=2; j<=n/i; ++j)
    {
         sum[i*j] += i; 
    }
}

代码:

#include<bits/stdc++.h>

using namespace std;
const int N = 5e4+10;
int n;
int sum[N];
int h[N], e[N], ne[N], w[N], idx;
bool st[N];
int ans;

void add(int a, int b, int c)
{
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

int dfs(int u)
{
    int down1 = 0, down2 = 0;
    for(int i=h[u]; ~i; i=ne[i])
    {
        int j = e[i];
        int d = dfs(j) + w[i];
        if(down1<=d) down2 = down1, down1 = d;
        else if(down2<d) down2 = d;
    }
    
    ans = max(ans, down1 + down2);
    
    return down1;
}

int main()
{
    cin>>n;
    for(int i=1; i<=n; ++i)
    {
        for(int j=2; j<=n/i; ++j)
        {
            sum[i*j] += i; //在 nlogn 的时间复杂度内预处理出 1~n 中每个数的约数之和
        }
    }
    memset(h, -1, sizeof h);
    for(int i=2; i<=n; ++i) //不可以从 1 开始建图,1 的约数和为 0,不符合题意
    {
        if(i>sum[i]) add(sum[i], i, 1), st[i] = true;
    }
    for(int i=1; i<=n; ++i)
        if(!st[i]) dfs(i);
    cout<<ans<<endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值