前言
上海的那一题完全没有想到是树形DP
传送门 :
思路
阅读题目我们可以知道
对于每一个 x x x他可以进行如下转换 :
- 向前 : 他的约数小于他, x → x ( d i v ) \rightarrow x(div) →x(div)
- 向后 : 比他大的约数之和是他 x ( d i v s u m ) = = x x(div_{sum}) ==x x(divsum)==x
又因为每一个约数之和都是唯一的
所以我们可以让每个数,前后可以转移的地方连一条边
然后问题就转换成 如何求这条数的最大直径
因此就可以返回到 树的直径的树形DP求法
/
这里的约数处理,我感觉有点魔幻,值得学习
f
s
u
m
[
i
∗
j
]
+
=
i
fsum[i*j] +=i
fsum[i∗j]+=i 表示
i
∗
j
i*j
i∗j的加上他的约数
j
j
j
CODE
const int N = 4e5+10;
vector<int> g[N];
int n ;
int fsum[N];
int d1[N],d2[N],res;
void dfs(int u)
{
if (d1[u]) return;
for(auto j : g[u])
{
dfs(j);
if (d1[j] + 1 >= d1[u]) d2[u] = d1[u], d1[u] = d1[j] + 1;
else if (d1[j] + 1 > d2[u]) d2[u] = d1[j] + 1;
}
res = max(res, d1[u] + d2[u]);
}
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)
for(int j=2;j<=n/i;j++) //求约数的循环
fsum[i*j] += i ;
//数i*j的约束 +=i
for(int i=2;i<=n;i++)
if(fsum[i] < i )
g[fsum[i]].push_back(i);
for(int i=1;i<=n;i++)
dfs(i);
cout<<res<<endl;
}