07笔记 离散数学——特殊性质的图——基于离散数学(第3版)_章炯民,陶增乐

1 欧拉图

概念

包含G所有边的简单通路称为G的欧拉通路,包含图G的所有边的简单回路称为G的欧拉回路。具有欧拉回路且不含孤立点的图叫欧拉图

性质

无向:
连通无向图是欧拉图当且仅当每个顶点的度均为偶数

推论:连通无向图中两个不同顶点间有欧拉通路当且仅当它们的度为奇数,且其他顶点的度均为偶数

有向:
弱连通的有向图是欧拉图当且仅当每个顶点的入度和出度相等

2 哈密顿图

定义

包含图G的所有顶点的基本通路称为G的哈密顿通路。包含G的所有顶点的基本回路称为G的哈密顿回路,具有哈密顿回路的图为哈密顿图

性质

无向:
(哈密顿图的必要条件)
若连通无向图 G = ( V , E ) G = (V,E) G=(V,E)是哈密顿图,对V的任意非空子集S,有 ω ( G − S ) ≤ ∣ S ∣ \omega(G-S)\le |S| ω(GS)S

(哈密顿图的充分条件)
n大于3,n阶无向简单图G的没对不相邻的顶点的度之和都不小于n,则G是哈密顿图

格雷码
长度为n的二进制串拍成序列,让所有相邻的串恰好相差一位,最后一个串和第一个串恰好差一位
利用超立方体图 Q n Q_n Qn来建立哈密顿回路可获得格雷码

竞赛图
底图为完全图的有向图

3 平面图

概念


G在平面上的画法,边仅仅相交于表示顶点的点,则G是平面图,否则称G是非平面图。平面图的边仅相交于顶点的几何图形表示称为他的平面表示,简称平图


平面图G的一个平图中,G的边把平面分成若干个区域,若一个区域内部没有G的边,则称该区域为平面图G的一个,包围一个面的各个最短回路称为该面的边界,免得编辑的长度称为面的次数,面R的次数记为deg( R ),面积有限的面为有限面,反之为无限面
【需要注意的是,如果一个边只接触到一个面(比如一个边两边都是同一个无限面),计算长度的时候要计算两次】


设平面图 G = ( V , E ) G = (V,E) G=(V,E)有r个面 R 1 . . . R r R_1...R_r R1...Rr,m条边 e 1 . . . e m e_1...e_m e1...em,如下构造的图 G ∗ = ( V ∗ , E ∗ ) G^*=(V^*,E^*) G=(V,E)为G的对偶图

(1)
G中每个面取一个点作为 G ∗ G^* G的顶点,设 G ∗ G^* G在面 R i R_i Ri中的顶点是 v i ∗ v_i^* vi,则 V ∗ V^* V={ v 1 ∗ , . . . , v r ∗ v_1^*,...,v_r^* v1,...,vr}
(2)
对于G中任意一条边 e k e_k ek,若 e k e_k ek属于两个不同的面 R i , R j R_i,R_j Ri,Rj(i!=j)的边界,则 G ∗ G^* G的边 e k ∗ = e_k^*= ek={ v i ∗ , v j ∗ v_i^*,v_j^* vi,vj};
若i==j,则构造 G ∗ G^* G的环 e k ∗ = e_k^*= ek={ v i ∗ , v i ∗ v_i^*,v_i^* vi,vi};于是 E ∗ E^* E= { e 1 ∗ , . . . , e m ∗ e_1^*,...,e_m^* e1,...,em}

性质

定理1:
平面图各个面次数之和等于边数量的两倍
∑ d e g ( R ) = ∑ v ∗ ∈ V ∗ d ( v ∗ ) = 2 ∣ E ∣ \sum deg(R)=\sum_{v^*\in V^*}d(v^*) = 2|E| deg(R)=vVd(v)=2E

定理2:
连通平面图有n个顶点,m条边,r个面,则n-m+r=2
推论
平面图面次数不小于k,有 m ≤ k k − 2 ( n − 2 ) m\le \frac{k}{k-2}(n-2) mk2k(n2)
可利用该性质证明 K 3 , , 3 , K 5 K_{3,,3},K_5 K3,,3,K5不是平面图

定义:
设G是无向图,若在G的边上插入一些度为2的顶点,将边分为几条直的边,所得到的图和G同胚;若在G中删掉一些边,将每对与被删之边关联的顶点合并为一个顶点,得到的图是G的收缩

定理(库拉托夫斯基)
1)无向图是平面图当且仅当其不存在与 K 3 , 3 K_{3,3} K3,3 K 5 K_5 K5同胚的子图
1)无向图是平面图当且仅当其不存在可收缩到 K 3 , 3 K_{3,3} K3,3 K 5 K_5 K5同胚的子图

4 无向树

概念

①连通且没有长度大于0的基本回路的无向图称为无向树,建成树,度为的顶点为叶子or叶结点,度数打羽1的顶点称为分支顶点分支节点
只有一个顶点的树称为平凡树 顶点个数不小于2的树称为**非平凡树

②没有长度大于0的基本回路的无向图称为无向森林

性质

1)G是树
2)G没有长度大于0的基本回路且|E|=|V|-1
3) G是连通图且|E|=|V|-1
4) G中没有长度大于0的基本回路且G中任意两个不相邻的顶点之间加边后,有且仅有一条不同的大于0的基本回路
5)G是连通图,G删去任意一条边后,不再是连通图
6)G是简单图,G中任意一对不同顶点之间有且仅有一条不同的基本通路

定义
若G的某个生成子图G是树,T是G的生成树
定理
无向图有生成树当且仅当其为连通图

5 有向树

定义
底图为无向树的有向图为有向树

定义
若T有且仅有一个顶点入度为0,其他顶点入度为1,T为根树

入度为0:根节点
出度为0:叶节点
出度大于0:分支结点、内节点
根到某一顶点通路的长度为顶点的层数
顶点最大层次为高度

定理
根到其他顶点的通路存在且唯一

定义
再根树中规定了兄弟之间的某种排列次序,称树为有序树

定义
一棵树中规定兄弟之间某种次序排列,称根树为有序树

定义
根数中所有的出度不大于m,至少有一个点出度为m,称这个数为m叉树,根树中所有顶点的出度均为0或m,称这个树为完全m叉树

定理
二叉树T中有u个叶子,v个长度为2的顶点
则u=v+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值