1 欧拉图
概念
包含G所有边的简单通路称为G的欧拉通路,包含图G的所有边的简单回路称为G的欧拉回路。具有欧拉回路且不含孤立点的图叫欧拉图
性质
无向:
连通无向图是欧拉图当且仅当每个顶点的度均为偶数
推论:连通无向图中两个不同顶点间有欧拉通路当且仅当它们的度为奇数,且其他顶点的度均为偶数
有向:
弱连通的有向图是欧拉图当且仅当每个顶点的入度和出度相等
2 哈密顿图
定义
包含图G的所有顶点的基本通路称为G的哈密顿通路。包含G的所有顶点的基本回路称为G的哈密顿回路,具有哈密顿回路的图为哈密顿图
性质
无向:
(哈密顿图的必要条件)
若连通无向图
G
=
(
V
,
E
)
G = (V,E)
G=(V,E)是哈密顿图,对V的任意非空子集S,有
ω
(
G
−
S
)
≤
∣
S
∣
\omega(G-S)\le |S|
ω(G−S)≤∣S∣
(哈密顿图的充分条件)
n大于3,n阶无向简单图G的没对不相邻的顶点的度之和都不小于n,则G是哈密顿图
格雷码
长度为n的二进制串拍成序列,让所有相邻的串恰好相差一位,最后一个串和第一个串恰好差一位
利用超立方体图
Q
n
Q_n
Qn来建立哈密顿回路可获得格雷码
竞赛图
底图为完全图的有向图
3 平面图
概念
①
G在平面上的画法,边仅仅相交于表示顶点的点,则G是平面图,否则称G是非平面图。平面图的边仅相交于顶点的几何图形表示称为他的平面表示,简称平图
②
平面图G的一个平图中,G的边把平面分成若干个区域,若一个区域内部没有G的边,则称该区域为平面图G的一个面,包围一个面的各个最短回路称为该面的边界,免得编辑的长度称为面的次数,面R的次数记为deg( R ),面积有限的面为有限面,反之为无限面
【需要注意的是,如果一个边只接触到一个面(比如一个边两边都是同一个无限面),计算长度的时候要计算两次】
③
设平面图
G
=
(
V
,
E
)
G = (V,E)
G=(V,E)有r个面
R
1
.
.
.
R
r
R_1...R_r
R1...Rr,m条边
e
1
.
.
.
e
m
e_1...e_m
e1...em,如下构造的图
G
∗
=
(
V
∗
,
E
∗
)
G^*=(V^*,E^*)
G∗=(V∗,E∗)为G的对偶图
(1)
G中每个面取一个点作为
G
∗
G^*
G∗的顶点,设
G
∗
G^*
G∗在面
R
i
R_i
Ri中的顶点是
v
i
∗
v_i^*
vi∗,则
V
∗
V^*
V∗={
v
1
∗
,
.
.
.
,
v
r
∗
v_1^*,...,v_r^*
v1∗,...,vr∗}
(2)
对于G中任意一条边
e
k
e_k
ek,若
e
k
e_k
ek属于两个不同的面
R
i
,
R
j
R_i,R_j
Ri,Rj(i!=j)的边界,则
G
∗
G^*
G∗的边
e
k
∗
=
e_k^*=
ek∗={
v
i
∗
,
v
j
∗
v_i^*,v_j^*
vi∗,vj∗};
若i==j,则构造
G
∗
G^*
G∗的环
e
k
∗
=
e_k^*=
ek∗={
v
i
∗
,
v
i
∗
v_i^*,v_i^*
vi∗,vi∗};于是
E
∗
E^*
E∗= {
e
1
∗
,
.
.
.
,
e
m
∗
e_1^*,...,e_m^*
e1∗,...,em∗}
性质
定理1:
平面图各个面次数之和等于边数量的两倍
∑
d
e
g
(
R
)
=
∑
v
∗
∈
V
∗
d
(
v
∗
)
=
2
∣
E
∣
\sum deg(R)=\sum_{v^*\in V^*}d(v^*) = 2|E|
∑deg(R)=∑v∗∈V∗d(v∗)=2∣E∣
定理2:
连通平面图有n个顶点,m条边,r个面,则n-m+r=2
推论
平面图面次数不小于k,有
m
≤
k
k
−
2
(
n
−
2
)
m\le \frac{k}{k-2}(n-2)
m≤k−2k(n−2)
可利用该性质证明
K
3
,
,
3
,
K
5
K_{3,,3},K_5
K3,,3,K5不是平面图
定义:
设G是无向图,若在G的边上插入一些度为2的顶点,将边分为几条直的边,所得到的图和G同胚;若在G中删掉一些边,将每对与被删之边关联的顶点合并为一个顶点,得到的图是G的收缩
定理(库拉托夫斯基)
1)无向图是平面图当且仅当其不存在与
K
3
,
3
K_{3,3}
K3,3
K
5
K_5
K5同胚的子图
1)无向图是平面图当且仅当其不存在可收缩到
K
3
,
3
K_{3,3}
K3,3
K
5
K_5
K5同胚的子图
4 无向树
概念
①连通且没有长度大于0的基本回路的无向图称为无向树,建成树,度为的顶点为叶子or叶结点,度数打羽1的顶点称为分支顶点或分支节点
只有一个顶点的树称为平凡树 顶点个数不小于2的树称为**非平凡树
②没有长度大于0的基本回路的无向图称为无向森林
性质
1)G是树
2)G没有长度大于0的基本回路且|E|=|V|-1
3) G是连通图且|E|=|V|-1
4) G中没有长度大于0的基本回路且G中任意两个不相邻的顶点之间加边后,有且仅有一条不同的大于0的基本回路
5)G是连通图,G删去任意一条边后,不再是连通图
6)G是简单图,G中任意一对不同顶点之间有且仅有一条不同的基本通路
定义
若G的某个生成子图G是树,T是G的生成树
定理
无向图有生成树当且仅当其为连通图
5 有向树
定义
底图为无向树的有向图为有向树
定义
若T有且仅有一个顶点入度为0,其他顶点入度为1,T为根树
入度为0:根节点
出度为0:叶节点
出度大于0:分支结点、内节点
根到某一顶点通路的长度为顶点的层数
顶点最大层次为高度
定理
根到其他顶点的通路存在且唯一
定义
再根树中规定了兄弟之间的某种排列次序,称树为有序树
定义
一棵树中规定兄弟之间某种次序排列,称根树为有序树
定义
根数中所有的出度不大于m,至少有一个点出度为m,称这个数为m叉树,根树中所有顶点的出度均为0或m,称这个树为完全m叉树
定理
二叉树T中有u个叶子,v个长度为2的顶点
则u=v+1