离散数学-欧拉图和哈密顿图

欧拉图

给定无孤立结点的图G,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉通路
Euler Circuit
给定无孤立结点的图G,若存在一条回路,经过图中每边一次且仅一次,该回路称为欧拉回路。
Euler Graph
包含了欧拉回路的图的图称为欧拉图。
包含了欧拉通路的图的图称为半欧拉图。
规定:仅由一个孤立结点构成的平凡图为欧拉图。
Euler Path
图G里的欧拉通路是包含着G的每一条边的简单通路,所有经过图中所有边的通路中长度最短。
Euler Circuit
图G里的欧拉回路是包含着G的每一条边的简单回路,所有经过图中所有边的回路中长度最短。
欧拉通路和欧拉回路就是图中所有边的一种全排列

在这里插入图片描述

欧拉定理

无孤立顶点的无向图G具有一条Euler路,当且仅当 G是连通的,且有零个或两个奇数度顶点
推论
无向图G具有一条Euler回路,当且仅当 G是连通的,且所有顶点度数全为偶数
(一个是欧拉路一个是欧拉回路)
由以上欧拉定理知,若有欧拉路,则G连通且有零个或两个奇数度顶点。
若存在两个奇数度顶点,一定是一个为起点V0 ,一个为终点Vn , 且二者不相等,若有零个奇数度顶点,说明所有顶点的度数均为偶数,一定是v0=vn ,即存在回路,则为欧拉回路。

判定一个图G是否可以一笔画出 :
(1) 从图G中某一顶点出发,经过图G的每一边一次且仅一次到达另一顶点。
(2)从图G中某一顶点出发,经过图G的每一边一次且仅一次回到该顶点。

在这里插入图片描述

有向图中的欧拉回路与欧拉通路

定理10.1.2
 一个无孤立顶点的有向图G含有Euler回路,当且仅当 G是连通的,且每个顶点的出度等于入度(每个顶点的度为偶数,与无向图对应)。
 一个无孤立顶点的有向图G含有Euler通路,当且仅当除去两个顶点外每个顶点的出度和入度相等,其中一个顶点的出度比入度大1,另一个顶点的入度比出度大1。(两个奇数度顶点,通路中不能互换)

Fleury算法求欧拉通路和回路
核心思想:
从图中任一点出发,随机删除与此点相连的边。
在保证以下两个条件的基础上,依次删除与之相连的边:
1)如果删除某边后使得该边的某端点为孤立结点,则将该端点与该边一并删除。
2) 删除某边后,不能造成图的不连通。

Hamilton 回路与通路

定义10.1.3:
 给定图G,若存在一条经过图中每个顶点恰好一次的路,该路称作Hamilton通路。
 若存在 一条回路,经过图中每个顶点恰好一次,则该回路称作Hamilton回路。
如果一个连通图G含有Hamilton回路,那么G是Hamilton图。

Hamilton Path
图G里的Hamilton通路是包含G的每一顶点的基本通路。
Hamilton Circuit
图G里的Hamilton回路是包含G的每一顶点的基本回路。
Hamilton通路和Hamilton回路就是图中所有结点的一种全排列。
规定:仅由一个孤立结点构成的平凡图为Hamilton图。

Hamilton 图判定的必要条件

在这里插入图片描述
在这里插入图片描述
适用于半哈密顿图:
在这里插入图片描述
在这里插入图片描述
上面条件可以用来判断一个图不是哈密顿图:
在这里插入图片描述

在这里插入图片描述
证明图中不存在哈密顿图:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

奥尔定理(充分非必要条件)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
哈密顿图充要条件
定理10.1.5 Hamilton图的充要条件:
当且仅当一个简单图的闭包是Hamilton图时,这个简单图是Hamilton图。
定义10.1.5 给定图G=<V,E>有n个结点,若将图G中度数之和至少是n的非邻接结点连接起来得图G’,对图G’重复上述步骤,直到不再有这样的结点对存在为止,所得到的图,称为原图G的闭包,记作C(G)。
定理 10.1.5推论
给定简单无向图G=<V,E>,有n个结点,n≥3,
若C(G)是完全图,则图G是Hamilton图。(完全图:每对顶点之间都有边相连)

判断某无向图是否Hamilton图
结点个数不多的简单无向图
1.根据定义观察出Hamilton回路
2.满足奥尔定理条件(度较小结点开始),是Hamilton图。
3. 利用定理3的条件,若 ,则不是
Hamilton图。
4.构造闭包进行判断。
5.很多人为简单易行的充要条件努力

中国邮路问题

中国邮路问题

邮递员从邮局出发,到他所负责的地段投寄信件。地段中的每条街至少经过一次。问应怎样选择投寄路线使所走的路程最短?
用图论的语言, 这一问题可表述为: 在一个赋权连通无向图G中,求一个权和最小的包含每条边至少一次的闭通路。这样的闭通路简称为最佳邮路。
与欧拉图有相似之处

如果道路刚好是一个Euler图,则容易求解。因为根据问题要求,图中每条边都经过一次且刚好一次,一定是包含了所有边的权和最小的走法。用Fleury算法求出一个Euler回路即可。
如果不是Euler图,则加上若干重复边,使之成为Euler图,并进一步对该Euler 图进行调优。
关键问题:如何添加重复边
中国邮路问题是Euler回路的近似求解。
在这里插入图片描述
在这里插入图片描述

  • 10
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值