05概率论与数理统计笔记——数理统计基础——基于《概率论与数理统计》许忠好

总体与样本

研究对象的全体称为总体,把组成总体的每个成员称为个体

从总体中抽出的部分个体为样本,样本所含的个体称为样品,样本中样品个数称为样本容量

设X是分布函数F(x)的随机变量,若 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是具有同一分布函数 F ( x ) F(x) F(x)相互独立随机变量,称 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是来自总体X(或分布函数 F ( x ) F(x) F(x)中容量为n的简单随机样本,简称为样本

经验分布函数

x 1 , . . . , x n x_1,...,x_n x1,...,xn是来自总体分布函数F(x)的样本,记 I i ( x ) = { 1 x i ≤ x 0 x i > x I_i(x) = \left\{ \begin{aligned} 1& &x_i\le x \\ 0 & & x_i > x\\ \end{aligned} \right. Ii(x)={10xixxi>x
则函数 F n ( x ) = 1 n ∑ i = 1 n I i ( x ) F_n(x)=\frac{1}{n}\sum^n_{i=1}I_i(x) Fn(x)=n1i=1nIi(x)为经验分布函数

统计量

X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是某总体样本,若样本函数 T = T ( X 1 , X 2 , . . . , X n ) T = T(X_1,X_2,...,X_n) T=T(X1,X2,...,Xn)不含任何未知参数,称T为统计量

常用统计量
样本均值
X ‾ = 1 n ∑ i = 1 n X i \overline{X} = \frac{1}{n}\sum^n_{i=1}X_i X=n1i=1nXi
样本方差
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ‾ 2 ) S^2=\frac{1}{n-1}\sum^n_{i=1}(X_i-\overline{X})^2=\frac{1}{n-1}(\sum^n_{i=1}X_i^2-n\overline{X}^2) S2=n11i=1n(XiX)2=n11(i=1nXi2nX2)
样本标准差
S = S 2 S = \sqrt{S^2} S=S2
样本k阶原点矩
A k = 1 n ∑ i = 1 n X i k A_k=\frac{1}{n}\sum^n_{i=1}X^k_i Ak=n1i=1nXik
样本k阶中心距
B k = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 B_k=\frac{1}{n}\sum^n_{i=1}(X_i-\overline{X})^2 Bk=n1i=1n(XiX)2

不难发现 A 1 = X ‾ , B 1 = 0 A_1=\overline{X},B_1=0 A1=X,B1=0

抽样分布

卡方分布

X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn独立分布且服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),则称随机变量 χ 2 = ∑ i = 1 n X i 2 \chi^2=\sum^n_{i=1}X_i^2 χ2=i=1nXi2服从自由度为n的卡方分布
记为 χ 2 ∼ χ 2 ( n ) ∼ G a ( n 2 , 1 2 ) \chi^2\sim\chi^2(n)\sim Ga(\frac{n}{2},\frac{1}{2}) χ2χ2(n)Ga(2n,21)

不难发现数学期望为n,方差为2n
且卡方分布具有可加性

定理
X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn独立分布且服从标准正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)
于是有
χ 2 = ∑ i = 1 n ( X i 2 − μ σ ) 2 \chi^2=\sum^n_{i=1}(\frac{X_i^2-\mu}{\sigma})^2 χ2=i=1n(σXi2μ)2

t分布

X ∼ N ( 0 , 1 )    Y ∼ χ 2 ( n ) X\sim N(0,1)~~Y\sim\chi^2(n) XN(0,1)  Yχ2(n) X和Y相互独立
随机变量 T = X Y / n T = \frac{X}{\sqrt{Y/n}} T=Y/n X满足自由度为n的t分布,记为 T ∼ t ( n ) T\sim t(n) Tt(n)

性质
1) T ∼ t ( n ) T\sim t(n) Tt(n) n ≤ 1 n\le1 n1则ET不存在,n >1则ET=0
2) T ∼ t ( n ) T\sim t(n) Tt(n),n >1
E ∣ T ∣ k = { < ∞ k < n = ∞ k ≥ n E|T|^k= \left\{ \begin{aligned} <\infty& & k<n \\ =\infty & & k\ge n\\ \end{aligned} \right. ETk={<=k<nkn
3) T ∼ t ( n ) T\sim t(n) Tt(n),n>2 V a r T = n n − 2 VarT=\frac{n}{n-2} VarT=n2n
4)t(1)是柯西分布
5)n充分大可以用标准正态分布来近似

F分布

X ∼ χ 2 ( n )    Y ∼ χ 2 ( m ) X\sim\chi^2(n)~~Y\sim\chi^2(m) Xχ2(n)  Yχ2(m)
F = X / N Y / M F=\frac{X/N}{Y/M} F=Y/MX/N为自由度为(n,m)的F分布

性质
1) X ∼ t ( n ) X\sim t(n) Xt(n),则 X 2 ∼ F ( 1 , n ) X^2\sim F(1,n) X2F(1,n)
2) F ∼ F ( n , m ) , 1 / F ∼ F ( m , n ) F\sim F(n,m), 1/F\sim F(m,n) FF(n,m),1/FF(m,n)
3) F α ( n , m ) F 1 − a ( m , n ) = 1 F_\alpha(n,m) F_{1-a}(m,n)=1 Fα(n,m)F1a(m,n)=1

正态总体下抽样分布

Fisher定理
X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn独立分布且服从标准正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), X ‾ 和 S 2 \overline{X}和S^2 XS2是样本均值和样本方差,则他们独立且
1)
X ‾ ∼ N ( μ , σ 2 n ) \overline{X}\sim N(\mu,\frac{\sigma^2}{n}) XN(μ,nσ2)
2)
( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n-1)S^2}{\sigma^2}\sim\chi^2(n-1) σ2(n1)S2χ2(n1)
3)
X ‾ − μ S n ∼ t ( n − 1 ) \frac{\overline{X}-\mu}{S}\sqrt{n}\sim t(n-1) SXμn t(n1)

定理
X 1 , X 2 , . . . , X m X_1,X_2,...,X_m X1,X2,...,Xm独立分布且服从标准正态分布 N ( μ 1 , σ 1 2 ) N(\mu_1,\sigma_1^2) N(μ1,σ12)
Y 1 , Y 2 , . . . , Y n Y_1,Y_2,...,Y_n Y1,Y2,...,Yn独立分布且服从标准正态分布 N ( μ 2 , σ 2 2 ) N(\mu_2,\sigma_2^2) N(μ2,σ22)
X ‾ = 1 m ∑ i = 1 m X i     Y ‾ = 1 n ∑ i = 1 n Y i \overline{X}=\frac{1}{m}\sum^m_{i=1}X_i~~~ \overline{Y}=\frac{1}{n}\sum^n_{i=1}Y_i X=m1i=1mXi   Y=n1i=1nYi

S X 2 = 1 m − 1 ∑ i = 1 m ( X i − X ‾ ) 2     S Y 2 = 1 n − 1 ∑ i = 1 n ( Y i − Y ‾ ) 2 S^2_X=\frac{1}{m-1}\sum^m_{i=1}(X_i-\overline{X})^2~~~S^2_Y=\frac{1}{n-1}\sum^n_{i=1}(Y_i-\overline{Y})^2 SX2=m11i=1m(XiX)2   SY2=n11i=1n(YiY)2

1)
X ‾ − Y ‾ ∼ N ( μ 1 − μ 2   ,   σ 1 2 m + σ 2 2 n ) \overline{X}-\overline{Y}\sim N(\mu_1-\mu_2~,~\frac{\sigma_1^2}{m}+\frac{\sigma^2_2}{n}) XYN(μ1μ2 , mσ12+nσ22)

2)若 σ 1 = σ 2 = σ \sigma_1=\sigma_2=\sigma σ1=σ2=σ
X ‾ − Y ‾ − ( μ 1 − μ 2 ) S W 1 m + 1 n \frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{S_W\sqrt{\frac{1}{m}+\frac{1}{n}}} SWm1+n1 XY(μ1μ2)
其中
S W 2 = ( m − 1 ) S X 2 + ( N − 1 ) S Y 2 m + n − 2 S^2_W=\frac{(m-1)S^2_X+(N-1)S^2_Y}{m+n-2} SW2=m+n2(m1)SX2+(N1)SY2

F = S X 2 / σ 1 2 S Y 2 / σ 2 2 ∼ F ( m − 1 , n − 1 ) F= \frac{S^2_X/\sigma_1^2}{S^2_Y/\sigma_2^2}\sim F(m-1,n-1) F=SY2/σ22SX2/σ12F(m1,n1)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值