06概率论与数理统计笔记——参数估计——基于《概率论与数理统计》许忠好

矩估计

设总体 X X X的分布为 F ( x , θ ) F(x,\theta ) F(x,θ),其中 θ = ( θ 1 , θ 2 , . . . θ m ) \theta=(\theta_1,\theta_2,...\theta_m) θ=(θ1,θ2,...θm)为未知参数
μ m = E X m \mu_m=EX^m μm=EXm存在,记 μ k = E X k = g k ( θ ) \mu_k=EX^k=g_k(\theta) μk=EXk=gk(θ), X 1 . . . X n X_1...X_n X1...Xn是来自总体的样本, A k A_k Ak表示k阶样本原点矩,即为 A k = 1 n ∑ i = 1 n X i k A_k= \frac{1}{n} \sum^n_{i=1}X_i^k Ak=n1i=1nXik,称方程组 { A 1 = g 1 ( θ ) A 2 = g 2 ( θ ) . . . . . . . A m = g m ( θ ) \left\{ \begin{aligned} A_1=g_1(\theta)& & \\ A_2=g_2(\theta)& &\\ .......\\ A_m=g_m(\theta) \end{aligned} \right. A1=g1(θ)A2=g2(θ).......Am=gm(θ)
θ ^ = ( θ 1 ^ , θ 2 ^ , . . . θ m ^ ) \hat{\theta}=(\hat{\theta_1},\hat{\theta_2},...\hat{\theta_m}) θ^=(θ1^,θ2^,...θm^) θ \theta θ的矩估计, θ ^ k \hat{\theta}_k θ^k θ k \theta_k θk的矩估计

需要注意的是
1)矩估计的前提是总体的矩存在, θ \theta θ可以是多维的,所需要方程个数取决于 θ \theta θ的维数
2)矩估计可能不唯一

极大似然估计

定义:
p ( x , θ ) p(x,\theta) p(x,θ)为总体 X X X具有分布律(离散性分布)或概率密度函数(若为连续性分布) x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn是来自总体 X X X的样本,称 L ( θ ) = Π i = 1 n p ( x i , θ ) L(\theta)=\Pi^n_{i=1}p(x_i,\theta) L(θ)=Πi=1np(xi,θ)似然函数 L ( θ ) L(\theta) L(θ)的极大点 θ ^ M L E \hat{\theta}_{MLE} θ^MLE θ \theta θ似然估计

常见的极大似然估计

分布待估函数 M L E MLE MLE
$b(n,p) p p p X ‾ / n \overline{X}/n X/n
P ( λ ) P(\lambda) P(λ) λ \lambda λ ( ‾ X ) \overline(X) (X)
E x p ( λ ) Exp(\lambda) Exp(λ) λ \lambda λ 1 / X ‾ 1/\overline{X} 1/X
N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) μ \mu μ X ‾ \overline{X} X
N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) σ 2 \sigma^2 σ2 S n 2 S_n^2 Sn2

点估计的评价标准

无偏性

θ ^ = θ ^ ( X 1 , . . . X n ) \hat{\theta}=\hat{\theta}(X_1,...X_n) θ^=θ^(X1,...Xn) θ \theta θ的一个总估计,对于任意的 θ ∈ Θ \theta\in\Theta θΘ
E θ ^ = θ E\hat{\theta}=\theta Eθ^=θ θ ^ 是 θ \hat{\theta}是\theta θ^θ的无偏估计

有效性

θ 1 ^ θ 2 ^ \hat{\theta_1}\hat{\theta_2} θ1^θ2^ θ \theta θ的一个无偏估计,对于任意的 θ ∈ Θ \theta\in\Theta θΘ
V a r θ 1 ^ ≤ V a r θ 2 ^ Var\hat{\theta_1}\le Var\hat{\theta_2} Varθ1^Varθ2^且存在一个\theta使得 V a r θ 1 ^ < V a r θ 2 ^ Var\hat{\theta_1}< Var\hat{\theta_2} Varθ1^<Varθ2^则前者比后者有效

均方误差原则

θ ^ \hat{\theta} θ^ θ \theta θ的点估计
M S E ( θ ^ ) = E ( θ − θ ^ ) 2 MSE(\hat{\theta})=E(\theta-\hat{\theta})^2 MSE(θ^)=E(θθ^)2 θ ^ \hat{\theta} θ^的均方误差

单正态总体未知参数区间估计

  1. σ \sigma σ已知求 μ \mu μ置信区间
    [ X ‾ − σ n u 1 − α / 2 , X ‾ + σ n u 1 − α / 2 ] [\overline{X}-\frac{\sigma}{\sqrt{n}}u_{1-\alpha/2},\overline{X}+\frac{\sigma}{\sqrt{n}}u_{1-\alpha/2}] [Xn σu1α/2,X+n σu1α/2]

  2. σ \sigma σ未知求 μ \mu μ置信区间
    [ X ‾ − S n t 1 − α / 2 , X ‾ + S n t 1 − α / 2 ] [\overline{X}-\frac{S}{\sqrt{n}}t_{1-\alpha/2},\overline{X}+\frac{S}{\sqrt{n}}t_{1-\alpha/2}] [Xn St1α/2,X+n St1α/2]

  3. μ \mu μ已知求 σ \sigma σ置信区间
    [ ∑ k = 1 n ( X k − μ ) 2 χ 1 − α / 2 2 ( n ) , ∑ k = 1 n ( X k − μ ) 2 χ α / 2 2 ( n ) ] [\frac{\sum^n_{k=1}(X_k-\mu)^2}{\chi^2_{1-\alpha/2}(n)},\frac{\sum^n_{k=1}(X_k-\mu)^2}{\chi^2_{\alpha/2}(n)}] [χ1α/22(n)k=1n(Xkμ)2,χα/22(n)k=1n(Xkμ)2]

  4. μ \mu μ未知求 σ \sigma σ置信区间
    [ ( n − 1 ) S 2 χ 1 − α / 2 2 ( n ) , ( n − 1 ) S 2 χ α / 2 2 ( n ) ] [\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n)},\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n)}] [χ1α/22(n)(n1)S2,χα/22(n)(n1)S2]

双正态总体未知参数区间估计

μ 1 − μ 2 \mu_1-\mu_2 μ1μ2的置信区间

1. σ 1 和 σ 2 \sigma_1和\sigma_2 σ1σ2已知
X ‾ − Y ‾ ∼ N ( μ 1 − μ 2 , σ 1 2 m + σ 2 2 n ) \overline{X}-\overline{Y}\sim N(\mu_1-\mu_2,\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}) XYN(μ1μ2,mσ12+nσ22)

[ X ‾ − Y ‾ − u 1 − α / 2 σ 1 2 m + σ 2 2 n , X ‾ − Y ‾ + u 1 − α / 2 σ 1 2 m + σ 2 2 n ] [\overline{X}-\overline{Y}-u_{1-\alpha/2}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}},\overline{X}-\overline{Y}+u_{1-\alpha/2}\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}] [XYu1α/2mσ12+nσ22 ,XY+u1α/2mσ12+nσ22 ]

2. σ 1 = σ 2 \sigma_1=\sigma_2 σ1=σ2但未知
S X 2 = 1 m − 1 ∑ i = 1 m ( X i − X ‾ ) 2 S Y 2 = 1 n − 1 ∑ j = 1 n ( Y j − Y ‾ ) 2 S^2_X=\frac{1}{m-1}\sum^m_{i=1}(X_i-\overline{X})^2\quad S_Y^2 = \frac{1}{n-1}\sum^n_{j=1}(Y_j-\overline{Y})^2 SX2=m11i=1m(XiX)2SY2=n11j=1n(YjY)2
S W 2 = ( m − 1 ) S X 2 + ( n − 1 ) S Y 2 m + n − 2 S_W^2=\frac{(m-1)S_X^2+(n-1)S_Y^2}{m+n-2} SW2=m+n2(m1)SX2+(n1)SY2
T = X ‾ − Y ‾ − ( μ 1 − μ 2 ) S W 1 m + 1 n ∼ t ( m + n − 2 ) T=\frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{S_W\sqrt{\frac{1}{m}+\frac{1}{n}}}\sim t(m+n-2) T=SWm1+n1 XY(μ1μ2)t(m+n2)
于是置信区间为
[ X ‾ − Y ‾ − t 1 − α / 2 ( m + n − 2 ) S W 1 m + 1 n   ,   X ‾ − Y ‾ + t 1 − α / 2 ( m + n − 2 ) S W 1 m + 1 n ] [\overline{X}-\overline{Y}-t_{1-\alpha/2}(m+n-2)S_W\sqrt{\frac{1}{m}+\frac{1}{n}}\ ,\ \overline{X}-\overline{Y}+t_{1-\alpha/2}(m+n-2)S_W\sqrt{\frac{1}{m}+\frac{1}{n}}] [XYt1α/2(m+n2)SWm1+n1  , XY+t1α/2(m+n2)SWm1+n1 ]

3. σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2未知, m=n
Z ‾ = 1 n ∑ i = 1 n Z i = X ‾ − Y ‾ S Z 2 = 1 n − 1 ∑ i = 1 n ( Z i − Z ‾ ) 2 \overline{Z}=\frac{1}{n}\sum^n_{i=1}Z_i=\overline{X}-\overline{Y}\quad S^2_Z=\frac{1}{n-1}\sum^n_{i=1}(Z_i-\overline{Z})^2 Z=n1i=1nZi=XYSZ2=n11i=1n(ZiZ)2
Z ‾ − ( μ 1 − μ 2 ) S Z n ∼ t ( n − 1 ) \frac{\overline{Z}-(\mu_1-\mu_2)}{S_Z}\sqrt{n}\sim t(n-1) SZZ(μ1μ2)n t(n1)
[ Z ‾ − t 1 − α / 2 ( n − 1 ) S Z n , Z ‾ + t 1 − α / 2 ( n − 1 ) S Z n ] [\overline{Z}-t_{1-\alpha/2}(n-1)\frac{S_Z}{\sqrt{n}},\overline{Z}+t_{1-\alpha/2}(n-1)\frac{S_Z}{\sqrt{n}}] [Zt1α/2(n1)n SZ,Z+t1α/2(n1)n SZ]

4. σ 1 , σ 2 \sigma_1,\sigma_2 σ1,σ2未知, m,n充分大
X ‾ − Y ‾ − ( μ 1 − μ 2 ) S X 2 m + S Y 2 n \frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)}{\sqrt{\frac{S_X^2}{m}+\frac{S_Y^2}{n}}} mSX2+nSY2 XY(μ1μ2)

[ X ‾ − Y ‾ − u 1 − α / 2 S X 2 m + S Y 2 n , X ‾ − Y ‾ + u 1 − α / 2 S X 2 m + S Y 2 n ] [\overline{X}-\overline{Y}-u_{1-\alpha/2}\sqrt{\frac{S_X^2}{m}+\frac{S_Y^2}{n}},\overline{X}-\overline{Y}+u_{1-\alpha/2}\sqrt{\frac{S_X^2}{m}+\frac{S_Y^2}{n}}] [XYu1α/2mSX2+nSY2 ,XY+u1α/2mSX2+nSY2 ]

方差比

( m − 1 ) S X 2 / σ 1 2 ∼ χ 2 ( m − 1 ) (m-1)S^2_X/\sigma^2_1\sim\chi^2(m-1) (m1)SX2/σ12χ2(m1)

我们有 S X 2 / σ 1 2 S Y 2 / σ 2 2 ∼ F ( m − 1 , n − 1 ) \frac{S^2_X/\sigma^2_1}{S^2_Y/\sigma^2_2}\sim F(m-1,n-1) SY2/σ22SX2/σ12F(m1,n1)

[ S X 2 / S Y 2 F 1 − α / 2 ( m − 1 , n − 1 ) , S X 2 / S Y 2 F α / 2 ( m − 1 , n − 1 ) ] [\frac{S_X^2/S_Y^2}{F_{1-\alpha/2}(m-1,n-1)},\frac{S_X^2/S_Y^2}{F_{\alpha/2}(m-1,n-1)}] [F1α/2(m1,n1)SX2/SY2,Fα/2(m1,n1)SX2/SY2]

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值