Win10上安装CUDA和CUDNN

4 篇文章 0 订阅
2 篇文章 0 订阅

因项目代码需要安装,最终环境配置如下:

tensorflow 2.1.0
cuda_10.2.89_441.22_win10.exe
cudnn-10.2-windows10-x64-v7.6.5.32.zip

 

1.CUDA下载安装

CUDA的安装包可直接从NVIDIA官网下载。根据相应的系统选项,我选择的是cuda_10.2.89_441.22_win10.exe(大小为2+G),安装的时候建议选择 自定义 而不是“精简”(从下面的英文解释可以看出,其实这里的精简写成完整应该更贴切,会安装所有组件并覆盖现有驱动)。

根据需要可以将自定义安装选项中的CUDA都安装,如果没有VS,可以不安装Visual Studio Integration。之后有安装路径,一般选择默认,如果你调整,请记住。后面需要做环境配置。

 

2. cuDNN下载安装

安装完成后,需要下载cuDNN,需要注册并登录后才能下载。

下载完成后,将压缩包的所有内容拷贝到CUDA安装目录相应文件夹下即可。

 

3. 环境变量配置

计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了CUDA_PATH和CUDA_PATH_V10_2两个环境变量,接下来,还要在系统中添加以下几个环境变量(如果自定义了路径,请参考调整):

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2

CUDA_LIB_PATH = %CUDA_PATH%\lib\x64

CUDA_BIN_PATH = %CUDA_PATH%\bin

CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

添加好后,如下图:

 

然后在在系统变量 PATH 的末尾添加:

%CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_LIB_PATH%;%CUDA_SDK_BIN_PATH%;

再添加如下4条(默认安装路径):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\common\lib\x64

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\bin\win64

如果你选用了自定义路径,上述这些默认路径都应该相应替换为你的自定义路径。

 

4. 验证配置

配置完成后,可以验证是否配置成功,主要使用CUDA内置的deviceQuery.exe 和 bandwithTest.exe:

首先win+R启动cmd,cd到安装目录下的 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite,然后分别执行bandwidthTest.exe和deviceQuery.exe,我的电脑上得到图如下:

 

 

如果以上两步都返回了Result=PASS,那么就算成功啦。

 

5. 附

在编译运行一个立体视觉的项目代码时,碰到了 Could not load dynamic library 'cudart64_101.dll' 的错误。

排查错误,显示“cudart64_101.dll not found”,那是因为我安装的cuda为10.2版本的,“cudart64_101.dll”是cuda10.1这个版本中才含有的(cuda10.2 里面是102.dll)。

因此需要手动将“cudart64_101.dll”添加到“C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin”中去。

另附cudart64_101.dll链接https://cn.dll-files.com/cudart64_101.dll.html 

 

参考

https://blog.csdn.net/u010618587/article/details/82940528 

https://blog.csdn.net/u014380165/article/details/77340765

https://blog.csdn.net/qq_41999081/article/details/104515513 

 

安装CUDAcuDNN的步骤如下: 1. 首先,下载并安装CUDA。可以从NVIDIA官方网站下载适合您的操作系统和显卡的CUDA安装程序。安装过程中,选择自定义安装选项,确保选择正确的安装路径。安装完成后,系统会自动将CUDA的路径添加到系统的环境变量中。[1] 2. 下载cuDNNcuDNN是一个用于深度学习的加速库,可以提高训练和推理的速度。您需要在NVIDIA的开发者网站上注册并登录,然后下载适合您的CUDA版本的cuDNN。下载完成后,解压缩文件。 3. 将cuDNN文件复制到CUDA安装目录中。打开解压缩后的cuDNN文件夹,将其中的文件复制到CUDA安装目录的相应文件夹中。具体来说,将cuDNN的bin文件夹中的文件复制到CUDA的bin文件夹中,将include文件夹中的文件复制到CUDA的include文件夹中,将lib文件夹中的文件复制到CUDA的lib文件夹中。[2] 4. 验证安装是否成功。打开命令提示符,输入以下命令来验证CUDAcuDNN安装是否成功: - 输入`nvcc -V`,如果显示了CUDA的版本信息,则表示CUDA安装成功。 - 输入`python`,然后在Python交互式环境中输入以下代码来验证cuDNN安装: ```python import tensorflow as tf print(tf.__version__) ``` 如果能够成功导入TensorFlow并显示版本号,则表示cuDNN安装成功。[3] 请注意,安装CUDAcuDNN可能会因个人电脑的配置和操作系统的不同而有所差异。建议在安装前仔细阅读官方文档,并确保您的系统满足安装要求。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值