Enhanced Deep Residual Networks for Single Image Super-Resolution NTIRE2017(EDSR)

1 EDSR

1.1 相关研究

VDSR(CVPR2016)和SRResNet(CVPR2017)
1.跳跃链接,全局和局部的跳跃链接使模型更深更稳固。
2.尺寸放大方法,使用子像素卷积的后放大尺寸比之前放大更有效。但,可能被限制在单尺寸超分辨率重建。

1.2 EDSR的四个改进点

1.batch-normalization
在这里插入图片描述
在这里插入图片描述
不像分类问题,输入和输出有相似的分布。
在SR中,可能不希望标准化中间特征。
能节省40%的存储空间,去扩大模型大小。

2.扩大模型大小
在这里插入图片描述
在这里插入图片描述
增加特征比增加深度更好,特征增大到256开始出现不稳定。在残差块后连续的尺寸缩放层可以防止这种不稳定。

3.损失函数:L1,L2
在这里插入图片描述
4.Geometric Self-Ensemble
在这里插入图片描述

1.3 总结

在这里插入图片描述
Deeper & Wider: 32 ResBlocks and 256 channels
Global-local skip connections
Post-upscaling
No Batch-Normalization
Residual scaling
L1 loss function
Geometric self-ensemble (EDSR+)

2 MDSR

2.1 动机

1.VDSR:一个模型的多尺度超分辨率重建。
2.多尺度知识转移。(预训练x2尺度的网络极大的提高了x3和x4的网络训练)
在这里插入图片描述
3.不同尺度对应不同模型的缺点:较重的训练负担,浪费相同工作的的权值参数,冗余。
在这里插入图片描述

2.2 MDSR模型设计

在这里插入图片描述
1.减小不同尺度之间的差异
2.不同尺度间大多数权值参数共享
3.后尺度放大提升效率
在这里插入图片描述

2.3 总结

Very deep architecture: 80 ResBlocks
Most parameters are shared in main branch
Scale-specific pre-processing modules and up-samplers
Post-upscaling
No Batch-Normalization
L1 loss function
Geometric self-ensemble (MDSR+)

### 回答1: ESRGAN是增强型超分辨率生成对抗网络的缩写,它是一种深度学习模型,用于将低分辨率图像转换为高分辨率图像。它使用生成对抗网络(GAN)的方法,通过训练生成器和判别器来提高图像的质量。ESRGAN是目前最先进的超分辨率算法之一,它可以生成更加真实、细节更加丰富的高分辨率图像。 ### 回答2: ESRGAN是一种增强超分辨率生成对抗网络(Enhanced Super-Resolution Generative Adversarial Networks)的算法,它采用了图像增强技术和深度学习的方法,可以将低分辨率(LR)的图像转化为高分辨率(HR)的图像。该算法主要的贡献在于,它可以生成更加逼真的HR图像,从而更好地应用于实际的图像处理领域。 该算法主要是由两个子模型组成的,一个是生成模型(Generator),另一个是判别模型(Discriminator)。生成模型通过学习HR图像和相应的LR图像之间的关系,生成更加逼真的HR图像。而判别模型则评估生成模型生成的HR图像是否真实,从而提高生成模型的准确度。 ESRGAN算法采用特殊的损失函数,即感知损失和自适应增强损失,来优化生成模型。感知损失通过VGG网络来计算生成模型和HR图像之间的差异,以此来调整生成模型的参数。自适应增强损失则用于动态调整生成模型的输出图像的细节层次,使生成模型产生更加真实的输出图像。 ESRGAN算法在图像增强领域取得了显著的成果,其生成的HR图像质量要比先前的SRGAN算法有了很大的提升。因此,ESRGAN算法在实际应用中具有广泛的前景,可以为图像处理领域提供更加高效、准确和可靠的方法。 ### 回答3: ESRGAN(Enhanced Super-Resolution Generative Adversarial Networks)是一种利用深度学习算法进行图像超分辨率的技术。其主要思路是基于GAN模型,通过训练一个生成器去从低分辨率图像生成高分辨率图像,同时以高分辨率的真实图片为样本来训练判别器模型,使其能够区分出生成器生成的图像是否为真实高清图像。 ESRGAN相对于传统的超分辨率算法,具有以下几个优点: 1.超分辨率效果更好。传统的超分辨率算法往往是基于一些数学模型进行插值运算,因此往往会出现图像模糊、失真等问题。而ESRGAN能够通过深度学习算法学习到更加准确的纹理特征,从而可以生成更为真实的高清图像。 2.可扩展性更强。ESRGAN的GAN模型可以通过增加网络深度、增加训练数据等方式对模型进行优化,从而提高图像超分辨率效果。 3.针对性更强。ESRGAN可以针对不同种类的图像进行训练,从而能够对各种类型的图像进行超分辨率处理,具有广泛的适用性。 4.易于应用。ESRGAN训练出的模型可以很方便地应用到实际生产环境中,对于需要进行图像超分辨率处理的应用场景具有很大的帮助作用。 虽然ESRGAN在图像超分辨率方面具有较为突出的优势,但其也存在一些缺点和挑战。比如需要大量的高清图像数据用于训练,需要考虑到训练时间和计算资源的问题;还需要解决一些局部纹理复杂的图像超分辨率问题。总之,ESRGAN是一种非常有潜力的图像超分辨率算法,将有助于推动图像处理技术的进一步发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值