1 EDSR
1.1 相关研究
VDSR(CVPR2016)和SRResNet(CVPR2017)
1.跳跃链接,全局和局部的跳跃链接使模型更深更稳固。
2.尺寸放大方法,使用子像素卷积的后放大尺寸比之前放大更有效。但,可能被限制在单尺寸超分辨率重建。
1.2 EDSR的四个改进点
1.batch-normalization
不像分类问题,输入和输出有相似的分布。
在SR中,可能不希望标准化中间特征。
能节省40%的存储空间,去扩大模型大小。
2.扩大模型大小
增加特征比增加深度更好,特征增大到256开始出现不稳定。在残差块后连续的尺寸缩放层可以防止这种不稳定。
3.损失函数:L1,L2
4.Geometric Self-Ensemble
1.3 总结
Deeper & Wider: 32 ResBlocks and 256 channels
Global-local skip connections
Post-upscaling
No Batch-Normalization
Residual scaling
L1 loss function
Geometric self-ensemble (EDSR+)
2 MDSR
2.1 动机
1.VDSR:一个模型的多尺度超分辨率重建。
2.多尺度知识转移。(预训练x2尺度的网络极大的提高了x3和x4的网络训练)
3.不同尺度对应不同模型的缺点:较重的训练负担,浪费相同工作的的权值参数,冗余。
2.2 MDSR模型设计
1.减小不同尺度之间的差异
2.不同尺度间大多数权值参数共享
3.后尺度放大提升效率
2.3 总结
Very deep architecture: 80 ResBlocks
Most parameters are shared in main branch
Scale-specific pre-processing modules and up-samplers
Post-upscaling
No Batch-Normalization
L1 loss function
Geometric self-ensemble (MDSR+)