(EDSR)CVPR-2017:Enhanced Deep Residual Networks for Single Image Super-Resolution

增强的单图像超分辨率深度残差网络;CVPR,2017

代码:https://github.com/LimBee/NTIRE2017 

主要问题

大多数现有的SR算法将不同尺度因子的超分辨率视为独立问题,这些算法需要许多尺度特定的网络,需要独立训练以处理各种尺度。

VDSR可以在单个网络中处理多个尺度的超分辨率,但是,VDSR的体系结构需要双三次插值图像作为输入,这导致与使用特定比例上采样方法的体系结构相比,计算时间和内存更大。

方法

  • 在SRResNet架构的基础上进行优化,通过分析和删除不必要的模块来简化网络架构
  • 提出了一个新的多尺度结构,在不同尺度共享大部分参数

使用单尺度体系结构(EDSR)处理特定的超分辨率比例,使用多尺度体系结构(MDSR)在单个模型中重建各种比例的高分辨率图像。

三种模型的残差块比较

 本文网络中删除了批处理归一化层(BN)。

由于批处理归一化层对特征进行归一化,通过对特征进行归一化,消除了网络的范围灵活性,因此最好将其删除。

由于批处理归一化层消耗的内存与前面的卷积层相同,内存使用也得到了降低。与SRResNet相比,没有批处理归一化层的模型在训练期间节省了大约40%的内存。

Single-scale model

作者认为提高网络模型性能最简单的方法是增加参数的数量。可以通过增加层数(B)或增加滤波器(F)的数量来提高模型性能。

通过增加滤波器的数量(宽度)而不是层数可以使模型容量最大化。但是宽度的数量超过一定水平会使训练过程在数值上不稳定。

本文采用因子为0.1的残差缩放来解决这个问题。在每个残差块中,在最后的卷积层之后放置常数缩放层。

单尺度模型 

(1)单尺度baseline model

如图2.(c),不含残差缩放层,因为每个卷积层只使用64个卷积核。

(2)EDSR

扩展的baseline model。在最终的单比例模型(EDSR)中,设置B=32,F=256和残差缩放层的比例因子0.1

在对模型进行上采样因子×3和×4的训练时,使用预先训练的×2网络来初始化模型参数,这样训练收敛速度比从随机初始化开始的要快得多。

如下图比较结果:绿线为从头开始随机初始化训练的性能,蓝线为使用预训练的×2网络来初始化训练的性能,红线为绿线的做好性能。

作者得出的结论:多尺度下的超分辨率是相互关联的任务。

Multi-scale model

多尺度模型

(1)多尺度baseline model

如图5,将基线(多尺度)模型设计为具有单个主分支和B=16个残差块,以便大多数参数在不同尺度上共享。 

在多尺度体系结构中,引入了特定尺度的处理模块来处理多尺度下的超分辨率。

首先,预处理模块位于网络的前端,以减少不同尺度输入图像的方差;每个预处理模块由两个残差块组成,残差块的核为5 × 5。在多尺度模型的末尾,并行放置了特定尺度的上采样模块,以处理多尺度重建。

(2)最终的多尺度模型(MDSR),B=80,F=64。

训练

(1)对于单比例模型(EDSR),按照×2模型从头开始训练。在模型收敛后,将其用作其他尺度的预训练网络。

(2)在每次更新训练多尺度模型(MDSR)时,使用在×2、×3和×4之间随机选择的尺度构建小批量。仅启用和更新与所选尺度对应的模块,即,不是所选尺度的特定尺度残差块和上采样模块不会被启用或更新。

几何自集成策略

①在测试期间,对于每一个LR图像样本X,通过翻转和旋转X,为每个样本生成 7 个增强输入X1~X7,再加上原始图像本身,共8种,记为X1~X8。

②利用这些增强的LR图像,使用网络生成相应的HR图像y1~y8。

③对这些HR图像进行逆变换,获得原始的几何图像Y1~Y8。

④最后,将所有转换后的HR图像Y1~Y8平均,Y = 1/8 * (Y1 + Y2 + ...... + Y8)。

使用自集成策略的网络用“EDSR+”和“MDSR+”来表示。

模型总结

 评估

on the DIV2K dataset

作者说:最小化L2通常是首选的,因为它最大化了PSNR。但是,基于一系列实验,经验发现L1损失比L2提供更好的收敛性。

 结论:使用L1训练的SRResNet比使用L2训练的原始SRResNet的结果稍好。最终的使用几何自集成技术的模型EDSR+和MDSR+的性能更好。

 结论:

与其他方法相比,我们的模型表现出显著的改进;

在使用自集成技术后,性能差距进一步增大;

与以前的工作相比,所提出的模型成功地重建了HR图像中的细节纹理和边缘,并显示出更好的SR输出。

总结

提出了增强的单图像超分辨率深度残差网络,通过从传统的ResNet体系结构中删除不必要的模块,在使模型紧凑的同时实现了改进的结果;

采用残差缩放技术来稳定地训练大型模型;

提出的单尺度模型超越了现有模型,实现了最先进的性能;

开发了一个多尺度超分辨率网络,以减少模型大小和训练时间,多尺度模型具有尺度相关模块和共享的主网络,能够在统一的框架内有效地处理各种尺度的超分辨率。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值