1354D - Multiset[二分][树状数组]
题意
一直以为是乱序的。。没想好怎么写
给一个长度为 n n n 的不降序数组,有 m m m 个操作
如果 k i < 0 k_i < 0 ki<0,删除第 k i k_i ki 个数,保证不会超过当前数组的长度
如果 k i > 0 k_i > 0 ki>0,插入 k i k_i ki,这里还会保持不降序数组
如果最后数组中还有数,输出数组中其中一个
做法
法一:二分
二分结果的值
如果删除的序号比 ≤ x \leq x ≤x 的数还大,那么对 x x x 最后保留在数组中是没有影响的
所以只需要记录 ≤ x \leq x ≤x 的数个数
如果删除的 − k i ≤ c n t -k_i \leq cnt −ki≤cnt,则 c n t − = 1 cnt -= 1 cnt−=1
如果插入的 k i ≤ x k_i \leq x ki≤x,则 c n t + = 1 cnt += 1 cnt+=1
如果满足就令 r = m i d r = mid r=mid
法二:树状数组
利用树状数组更新
然后二分查找要删除的数的值
Code: 二分
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define min(a,b) ((a)>(b)?(b):(a))
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn = 1e6 + 5;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
int a[maxn];
int q[maxn];
int n, m;
bool judge(int x) {
int cnt = 0;
for(int i = 1; i <= n; ++i)
cnt += a[i] <= x ? 1 : 0;
for(int i = 1; i <= m; ++i) {
if(q[i] < 0)
cnt -= (-q[i] <= cnt) ? 1 : 0;
else if(q[i] <= x)
cnt += 1;
}
return cnt > 0;
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for(int i = 1; i <= m; ++i)
scanf("%d", &q[i]);
int l = 1, r = n + 1, mid;
while(l < r) {
mid = (l + r) >> 1;
if(judge(mid)) r = mid;
else l = mid + 1;
}
printf("%d\n", r <= n ? r : 0);
return 0;
}
Code: 树状数组
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define min(a,b) ((a)>(b)?(b):(a))
#define max(a,b) ((a)>(b)?(a):(b))
const int inf = 0x3f3f3f3f;
const int maxn = 1e6 + 5;
int tr[maxn];
int n;
int lowbit(int x) {
return x & (-x);
}
void update(int id, int val) {
for(int i = id; i <= n; i += lowbit(i))
tr[i] += val;
}
int query(int id) {
int ans = 0;
for(int i = id; i > 0; i -= lowbit(i))
ans += tr[i];
return ans;
}
int main() {
int q, x;
scanf("%d%d", &n, &q);
for(int i = 1; i <= n; ++i) {
scanf("%d", &x); update(x, 1);
}
while(q--) {
scanf("%d", &x);
if(x > 0) update(x, 1);
else{
x = -x;
int l = 1, r = n, mid, ans = 0;
while(l <= r) {
int mid = (l + r) >> 1;
if(query(mid) >= x) ans = mid, r = mid - 1;
else l = mid + 1;
}
if(ans) update(ans, -1);
}
}
for(int i = 1; i <= n; ++i) {
if(query(i) > 0) {
printf("%d\n", i);
return 0;
}
}
puts("0");
return 0;
}