[Educational Codeforces Round 87 (div2)]1354D - Multiset[二分][树状数组]



1354D - Multiset[二分][树状数组]

题意

一直以为是乱序的。。没想好怎么写
给一个长度为 n n n 的不降序数组,有 m m m 个操作
如果 k i < 0 k_i < 0 ki<0,删除第 k i k_i ki 个数,保证不会超过当前数组的长度
如果 k i > 0 k_i > 0 ki>0,插入 k i k_i ki,这里还会保持不降序数组
如果最后数组中还有数,输出数组中其中一个

做法

法一:二分
二分结果的值
如果删除的序号比 ≤ x \leq x x 的数还大,那么对 x x x 最后保留在数组中是没有影响的
所以只需要记录 ≤ x \leq x x 的数个数
如果删除的 − k i ≤ c n t -k_i \leq cnt kicnt,则 c n t − = 1 cnt -= 1 cnt=1
如果插入的 k i ≤ x k_i \leq x kix,则 c n t + = 1 cnt += 1 cnt+=1
如果满足就令 r = m i d r = mid r=mid

法二:树状数组
利用树状数组更新
然后二分查找要删除的数的值

Code: 二分

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define min(a,b)    ((a)>(b)?(b):(a))
#define max(a,b)    ((a)>(b)?(a):(b))
const int maxn = 1e6 + 5;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);

int a[maxn];
int q[maxn];
int n, m;

bool judge(int x) {
    int cnt = 0;
    for(int i = 1; i <= n; ++i)
        cnt += a[i] <= x ? 1 : 0;
    for(int i = 1; i <= m; ++i) {
        if(q[i] < 0)
            cnt -= (-q[i] <= cnt) ? 1 : 0;
        else if(q[i] <= x)
            cnt += 1;
    }
    return cnt > 0;
}

int main() {
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; ++i)
        scanf("%d", &a[i]);
    for(int i = 1; i <= m; ++i)
        scanf("%d", &q[i]);
    int l = 1, r = n + 1, mid;
    while(l < r) {
        mid = (l + r) >> 1;
        if(judge(mid))  r = mid;
        else            l = mid + 1;
    }
    printf("%d\n", r <= n ? r : 0);
    return 0;
}
 

Code: 树状数组

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define min(a,b)    ((a)>(b)?(b):(a))
#define max(a,b)    ((a)>(b)?(a):(b))
const int inf = 0x3f3f3f3f;
const int maxn = 1e6 + 5;

int tr[maxn];
int n;

int lowbit(int x) {
    return x & (-x);
}

void update(int id, int val) {
    for(int i = id; i <= n; i += lowbit(i))
        tr[i] += val;
}

int query(int id) {
    int ans = 0;
    for(int i = id; i > 0; i -= lowbit(i))
        ans += tr[i];
    return ans;
}

int main() {
    int q, x;
    scanf("%d%d", &n, &q);
    for(int i = 1; i <= n; ++i) {
        scanf("%d", &x); update(x, 1);
    }
    while(q--) {
        scanf("%d", &x);
        if(x > 0)   update(x, 1);
        else{
            x = -x;
            int l = 1, r = n, mid, ans = 0;
            while(l <= r) {
                int mid = (l + r) >> 1;
                if(query(mid) >= x) ans = mid, r = mid - 1;
                else                l = mid + 1;
            }
            if(ans) update(ans, -1);
        }
    }
    for(int i = 1; i <= n; ++i) {
        if(query(i) > 0) {
            printf("%d\n", i);
            return 0;
        }
    }
    puts("0");
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值