3.3.1 什么是交叉验证(cross validation)
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
1. 分析
我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理
- 训练集:训练集+验证集
- 测试集:测试集
2. 为什么需要交叉验证
交叉验证目的:为了让被评估的模型更加准确可信
问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?
3.3.2 超参数搜索-网格搜索(Grid Search)
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
模型选择与调优API
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
- 对估计器的指定参数值进行详尽搜索
- estimator:估计器对象
- param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
- cv:指定几折交叉验证(常用10,数据量大cv小)
- fit:输入训练数据
- score:准确率
- 结果分析:
最佳参数:best_params_
最佳结果:best_score_
最佳预估器:best_estimator_
交叉验证结果:cv_results_
3.3.3 鸢尾花案例增加k值调优
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
iris=load_iris()
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = KNeighborsClassifier()
# 加入网格搜索与交叉验证
# 参数准备
param_dict={"n_neighbors":[1,3,5,7,9,11]}
estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)
estimator.fit(x_train,y_train)
y_predict= estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("直接比对真实值和预测值:\n",y_test==y_predict)
score=estimator.score(x_test,y_test)
print("准确率为:\n",score)
print("最佳参数:\n",estimator.best_params_)
print("最佳结果:\n",estimator.best_score_)
print("最佳预估器:\n",estimator.best_estimator_)
print("交叉验证结果:\n",estimator.cv_results_)
输出:
y_predict:
[0 2 1 2 1 1 1 2 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 2 2 2 2 0 0 1 1 1 0 0
0]
直接比对真实值和预测值:
[ True True True True True True True True True True True True
True True True True True True False True True True True True
True True True True True True True True True True True True
True True]
准确率为:
0.9736842105263158
最佳参数:
{'n_neighbors': 3}
最佳结果:
0.9553030303030303
最佳预估器:
KNeighborsClassifier(n_neighbors=3)
交叉验证结果:
{'mean_fit_time': array([0.00080364, 0.00117764, 0.00088334, 0.00062981, 0.00057104,
0.00054374]), 'std_fit_time': array([0.00028608, 0.00064032, 0.00037152, 0.00019407, 0.00018992,
0.00025528]), 'mean_score_time': array([0.00148735, 0.0034451 , 0.00192056, 0.00135787, 0.00118914,
0.00108874]), 'std_score_time': array([0.00044823, 0.00206669, 0.0007883 , 0.00044853, 0.0003674 ,
0.00034082]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9, 11],
mask=[False, False, False, False, False, False],
fill_value='?',
dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}, {'n_neighbors': 11}], 'split0_test_score': array([0.91666667, 0.91666667, 1. , 1. , 0.91666667,
0.91666667]), 'split1_test_score': array([1., 1., 1., 1., 1., 1.]), 'split2_test_score': array([0.90909091, 0.90909091, 0.90909091, 0.90909091, 0.90909091,
0.90909091]), 'split3_test_score': array([0.90909091, 1. , 0.90909091, 0.90909091, 0.90909091,
1. ]), 'split4_test_score': array([1., 1., 1., 1., 1., 1.]), 'split5_test_score': array([0.90909091, 0.90909091, 0.90909091, 0.90909091, 0.90909091,
0.90909091]), 'split6_test_score': array([0.90909091, 0.90909091, 0.90909091, 1. , 1. ,
1. ]), 'split7_test_score': array([0.90909091, 0.90909091, 0.81818182, 0.81818182, 0.81818182,
0.81818182]), 'split8_test_score': array([1., 1., 1., 1., 1., 1.]), 'split9_test_score': array([1., 1., 1., 1., 1., 1.]), 'mean_test_score': array([0.94621212, 0.95530303, 0.94545455, 0.95454545, 0.94621212,
0.95530303]), 'std_test_score': array([0.04397204, 0.0447483 , 0.06030227, 0.06098367, 0.05988683,
0.0604591 ]), 'rank_test_score': array([4, 1, 6, 3, 4, 1], dtype=int32)}
解释:为什么准确率与最佳结果不同
准确率是测试集的结果
最佳结果是以训练集划分为训练集和验证集,在验证集的结果