4.5 模型保存和加载

本文介绍了如何使用Python的sklearn库进行模型的保存和加载,以岭回归模型为例,详细展示了从数据预处理、模型训练到模型保存和加载的完整流程,并进行了模型评估。通过保存模型,可以方便地在未来对新数据进行预测,而无需重新训练。
摘要由CSDN通过智能技术生成

1. sklearn模型的保存和加载API

from sklearn.externals import joblib

  • 保存:joblib.dump(rf, 'test.pkl')
  • 加载:estimator = joblib.load('test.pkl')

2. 线性回归的模型保存加载案例

eg:用岭回归的模型进行保存和加载
前面都一样

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error

# 1.获取数据
boston = load_boston()
print("特征数量:\n",boston.data.shape)

# 2.划分数据集
x_train,x_test,y_train,y_test = train_test_split(boston.data,boston.target,random_state=22)

# 3.标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 岭回归对波士顿放假的预测优化方法
# 4.预估器
estimator = Ridge()
estimator.fit(x_train,y_train)
  • 保存
# 保存模型
import joblib
joblib.dump(estimator,"my_ridge.pkl")
  • 加载
# 加载模型
estimator = joblib.load("my_ridge.pkl")
# 5.得出模型
print("岭回归权重系数为:\n",estimator.coef_)
print("岭回归偏置为:\n",estimator.intercept_)


# 6.模型评估
y_predict = estimator.predict(x_test)
print("预测房价:\n",y_predict)
error = mean_squared_error(y_test,y_predict)
print("岭回归的均方误差为:\n",error)

最后的输出结果一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值