集成学习方法
集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此由于任何一个单分类的做出预测。
什么是随机森林
定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
随机森林建立多个决策树的过程
N个样本,M个特征
单个树建立的过程:
- 随机在N个样本中选择一个样本,重复N次,样本有可能重复
- 随机在M个特征当中选出m个特征,m取值小于M
- 建立多棵决策树,其中样本,特征大多不一样(随机有放回的抽样 bootstrap)
为什么要随机抽样训练集?
如果不进行随机抽样,每棵树的训练集都一样,那么最终训练的树分类结果也完全一样
为什么要有放回地抽样?
如果不是有放回地抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的,而随机森林最后分类取决于多棵树(弱分类器)的投票表决。
随机森林API
class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None)
随机森林分类器
- n_estimators:integer,optional(default = 10)森林里的树木数量120, 200, 300, 500, 800, 1200
- criteria:string,可选(default=’gini’)分割特征的测量方法
- max_depth:integer或None,可选(默认=无)树的最大深度,5, 8, 15, 25, 30
- max_features=’auto’,每一个决策树的最大特征数量
- auto -> max_features = sqrt(n_features)
- sqrt -> max_features = sqrt(n_features)
- log2 -> max_features = log2(n_features)
- None -> max_features = n_features
- Bootstrap: boolean, optional(default = True)是否在构建树时使用放回抽样
随机森林的优点
- 在当前所有算法中,具有极好的准确率
- 能够有效地运行在大数据集上
- 能够处理具有高维特征的输入样本,而且不需要降维
- 能够评估各个特征在分类问题上的重要性