分支限界法----旅行售货员问题

一、问题描述

某售货员要到若干城市去推销商品,已知各城市之间的路程(或旅费)。他要选定一条从驻地出发,经过每个城市一次,最后回到驻地的路线,使总的路程(或总旅费)最小。

        如下图:1,2,3,4 四个城市及其路线费用图,任意两个城市之间不一定都有路可达。

 

      

二、问题理解

      1.分支限界法利用的是广度优先搜索和最优值策略。

      2.利用二维数组保存图信息City_Graph[MAX_SIZE][MAX_SIZE]

         其中City_Graph[i][j]的值代表的是城市i与城市j之间的路径费用

         一旦一个城市没有通向另外城市的路,则不可能有回路,不用再找下去了

      3. 我们任意选择一个城市,作为出发点。(因为最后都是一个回路,无所谓从哪出发)

 

      下面是关键思路

       想象一下,我们就是旅行员,假定从城市1出发,根据广度优先搜索的思路,我们要把从城市1能到达的下一个城市,都要作为一种路径走一下试试。

       可是程序里面怎么实现这种“试试”呢?

       利用一种数据结构保存我们每走一步后,当前的一些状态参数,如,我们已经走过的城市数目(这样就知道,我们有没有走完,比如上图,当我们走了四个城市之后,无论从第四个城市是否能回到起点城市,都就意味着我们走完了,只是这条路径合不合约束以及能不能得到最优解的问题)。这里把,这种数据结构成为结点。这就需要另一个数据结构,保存我们每次试出来的路径,这就是堆

       数据结构定义如下:

 

 

 

       a.我们刚开始的时候不知道最总能得到的路径是什么,所以我们,就认为按照城市编号的次序走一遍。于是有了第一个结点0,放入堆             中。 相当于来到了城市1(可以是所有城市中的任意一个,这里姑且设为图中城市1)。

       b.从城市1,出发,发现有三条路可走,分别走一下,这样就产生了三个结点,都放入堆中。

          结点1 数据为:x[1 2 3 4],深度为s=1(深度为0表示在城市1还没有开始走),这说明,结点1是从城市1走来,走过了1个城                                      市,当前停在城市2,后面的城市3 和城市4都还没有走,但是具体是不是就按照3.4的顺序走,这个不一定。

          结点2 数据为:x[1 3 2 4],深度为s=1,表示,从城市1走来,走过了1个城市,当前停在了城市3,后面2.4城市还没走

          结点3 数据为:x[1 4 3 2],深度为s=1,表示,从城市1走来,走过了1个城市,当前停在了城市4,后面3.2城市还没有走

       c. 从堆中取一个结点,看看这个结点是不是走完了的,也就是要看看它的深度是不是3,是的话,说明走完了,看看是不是能回到起                点,如果可以而且费用少于先前得到最优的费用,就把当前的解作为最优解。

           如果没有走完,就继续把这条路走下去。

 

以上就是简单的想法,而实际的程序中,堆还需要提供对结点的优先权排序的支持。而当前结点在往下一个城市走时,也是需要约束和限界函数,这些书上讲的很清楚,不懂,就翻翻书。

有点要提出来说说的就是结点优先权和限界函数时都用到了一个最小出边和,就相当于把所有城市最便宜的一条路(边)费用加起来的值。

 

 

下面是代码

 

 

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值