【CV知识点汇总与解析】|激活函数篇

【CV知识点汇总与解析】|激活函数篇

【写在前面】

本系列文章适合Python已经入门、有一定的编程基础的学生或人士,以及人工智能、算法、机器学习求职的学生或人士。系列文章包含了深度学习、机器学习、计算机视觉、特征工程等。相信能够帮助初学者快速入门深度学习,帮助求职者全面了解算法知识点。

1、什么是激活函数?

在神经网络中,一个节点的激活函数(Activation Function)定义了该节点在给定的输入变量或输入集合下的输出。wiki中以计算机芯片电路为例,标准的计算机芯片电路可以看作是根据输入得到开(1)或关(0)输出的数字电路激活函数。激活函数主要用于提升神经网络解决非线性问题的能力。激活函数各式各样,各有优缺点,目前常用的有 ReLU、sigmoid、tanh等。

2、为什么需要激活函数?

当不用激活函数时,神经网络的权重和偏差只会进行线性变换。线性方程很简单,但是解决复杂问题的能力有限。没有激活函数的神经网络实质上就是一个线性回归模型。为了方便理解,以一个简单的例子来说明。考虑如下网络

在不用激活函数的情况下,该图可用如下公式表示

o u t p u t = w 7 ( i n p u t 1 ∗ w 1 + i n p u t 2 ∗ w 2 ) + w 8 ( i n p u t 1 ∗ w 3 + i n p u t 2 ∗ w 4 ) + w 9 ( i n p u t 1 ∗ w 5 + i n p u t 2 ∗ w 6 ) output =w 7( input 1 * w 1+i n p u t 2 * w 2)+w 8(i n p u t 1 * w 3+i n p u t 2 * w 4)+w 9(i n p u t 1 * w 5+i n p u t 2 * w 6) output=w7(input1w1+input2w2)+w8(input1w3+input2w4)+w9(input1w5+input2w6)

实质就是下面的线性方程:

o u t p u t = [ w 1 ∗ w 7 + w 3 ∗ w 8 + w 5 ∗ w 9 w 2 ∗ w 7 + w 4 ∗ w 8 + w 6 ∗ w 9 ] ∗ [  input  1  input  2 ] ⟹ Y = W X output =\left[\begin{array}{c}w 1 * w 7+w 3 * w 8+w 5 * w 9 \\ w 2 * w 7+w 4 * w 8+w 6 * w 9\end{array}\right] *\left[\begin{array}{c}\text { input } 1 \\ \text { input } 2\end{array}\right] \Longrightarrow Y=W X output=[w1w7+w3w8+w5w9w2w7+w4w8+w6w9][ input 1 input 2]Y=WX

若在隐藏层引入激活函数 h ( y ) = max ⁡ ( y , 0 ) h(y)=\max (y, 0) h(y)=max(y,0),那么原始式子就无法用简单线性方程表示了。

o u t p u t = w 7 ∗ max ⁡ ( i n p u t 1 ∗ w 1 + i n p u t 2 ∗ w 2 , 0 ) + w B ∗ max ⁡ ( i n p u t 1 ∗ w 3 + i n p u t 2 ∗ w 4 , 0 ) + w 9 ∗ max ⁡ ( i n p u t 1 ∗ w 5 + i n p u t 2 ∗ w 6 , 0 ) output =w 7 * \max ( input 1 * w 1+i n p u t 2 * w 2,0)+w B * \max ( input 1 * w 3+i n p u t 2 * w 4,0)+w 9 * \max ( input 1 * w 5+i n p u t 2 * w 6,0) output=w7max(input1w1+input2w2,0)+wBmax(input1w3+input2w4,0)+w9max(input1w5+input2w6,0)

3、激活函数的一些特性

非线性(Nonlinear) 当激活函数是非线性的,那么一个两层神经网络也证明是一个通用近似函数通用近似理论。而恒等激活函数则无法满足这一特性,当多层网络的每一层都是恒等激活函数时,该网络实质等同于一个单层网络。

连续可微(Continuously differentiable) 通常情况下,当激活函数连续可微,则可以用基于梯度的优化方法。(也有例外,如ReLU函数虽不是连续可微,使用梯度优化也存在一些问题,如ReLU存在由于梯度过大或学习率过大而导致某个神经元输出小于0,从而使得该神经元输出始终是0,并且无法对与其相连的神经元参数进行更新,相当于该神经元进入了“休眠”状态,但ReLU还是可以使用梯度优化的。)二值阶跃函数在0处不可微,并且在其他地方的导数是零,所以梯度优化方法不适用于该激活函数。

**单调(Monotonic) **当激活函数为单调函数时,单层模型的误差曲面一定是凸面。即对应的误差函数是凸函数,求得的最小值一定是全局最小值。

**一阶导单调(Smooth functions with a monotonic derivative) **通常情况下,这些函数表现更好。

原点近似恒等函数(Approximates identity near the origin) 若激活函数有这一特性,神经网络在随机初始化较小的权重时学习更高效。若激活函数不具备这一特性,初始化权重时必须特别小心。

4、机器学习领域常见的激活函数?

Identity(恒等函数)

描述: 一种输入和输出相等的激活函数,比较适合线性问题,如线性回归问题。但不适用于解决非线性问题。

方程式 f ( x ) = x f(x)=x f(x)=x

一阶导 f ′ ( x ) = 1 f^{\prime}(x)=1 f(x)=1

图形

Binary step(单位阶跃函数)

描述: step与神经元激活的含义最贴近,指当刺激超过阈值时才会激发。但是由于该函数的梯度始终为0,不能作为深度网络的激活函数

方程式 f ( x ) = { 0  for  x < 0 1  for  x ≥ 0 f(x)=\left\{\begin{array}{ll}0 & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}\right. f(x)={01 for x<0 for x0

一阶导 f ′ ( x ) = { 0  for  x ≠ 0 ?  for  x = 0 f^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x \neq 0 \\ ? & \text { for } x=0\end{array}\right. f(x)={0? for x=0 for x=0

图形

Sigmoid(S函数又称Logistic逻辑函数)

描述: 使用很广的一类激活函数,具有指数函数形状,在物理意义上最接近生物神经元。并且值域在(0,1)之间,可以作为概率表示。该函数也通常用于对输入的归一化,如Sigmoid交叉熵损失函数。Sigmoid激活函数具有梯度消失和饱和的问题,一般来说,sigmoid网络在5层之内就会产生梯度消失现象。

方程式 f ( x ) = σ ( x ) = 1 1 + e − x f(x)=\sigma(x)=\frac{1}{1+e^{-x}} f(x)=σ(x)=1+ex1

一阶导 f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f^{\prime}(x)=f(x)(1-f(x)) f(x)=f(x)(1f(x))

图形

TanH(双曲正切函数)

描述: TanH与Sigmoid函数类似,在输入很大或很小时,输出几乎平滑,梯度很小,不利于权重更新,容易出现梯度消失和饱和的问题。不过TanH函数值域在(-1,1)之间,以0为中心反对称,且原点近似恒等,这些点是加分项。一般二分类问题中,隐藏层用tanh函数,输出层用sigmod函数。

方程式 f ( x ) = tanh ⁡ ( x ) = ( e x − e − x ) ( e x + e − x ) f(x)=\tanh (x)=\frac{\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)} f(x)=tanh(x)=(ex+ex)(exex)

一阶导 f ′ ( x ) = 1 − f ( x ) 2 f^{\prime}(x)=1-f(x)^{2} f(x)=1f(x)2

图形

ArcTan(反正切函数)

描述: ArcTen从图形上看类似TanH函数,只是比TanH平缓,值域更大。从一阶导看出导数趋于零的速度比较慢,因此训练比较快。

方程式 f ( x ) = tan ⁡ − 1 ( x ) f(x)=\tan ^{-1}(x) f(x)=tan1(x)

一阶导 f ′ ( x ) = 1 x 2 + 1 f^{\prime}(x)=\frac{1}{x^{2}+1} f(x)=x2+11

图形

Softsign函数

描述: Softsign从图形上看也类似TanH函数,以0为中心反对称,训练比较快。

方程式 f ( x ) = x 1 + ∥ x ∥ f(x)=\frac{x}{1+\|x\|} f(x)=1+xx

一阶导 f ′ ( x ) = 1 ( 1 + ∥ x ∥ ) 2 f^{\prime}(x)=\frac{1}{(1+\|x\|)^{2}} f(x)=(1+x)21

图形

Rectified linear unit(线性整流函数,ReLU)

描述: 比较流行的激活函数,该函数保留了类似step那样的生物学神经元机制,即高于0才激活,不过因在0以下的导数都是0,可能会引起学习缓慢甚至神经元死亡的情况。

方程式 f ( x ) = { 0  for  x ≤ 0 x  for  x > 0 f(x)=\left\{\begin{array}{ll}0 & \text { for } x \leq 0 \\ x & \text { for } x>0\end{array}\right. f(x)={0x for x0 for x>0

一阶导 f ′ ( x ) = { 0  for  x ≤ 0 1  for  x > 0 f^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{array}\right. f(x)={01 for x0 for x>0

图形

Leaky rectified linear unit(带泄露随机线性整流函数,Leaky ReLU)

描述: relu的一个变化,即在小于0部分不等于0,而是加一个很小的不为零的斜率,减少神经元死亡带来的影响。

方程式 f ( x ) = { 0.01 x  for  x < 0 x  for  x ≥ 0 f(x)=\left\{\begin{array}{ll}0.01 x & \text { for } x<0 \\ x & \text { for } x \geq 0\end{array}\right. f(x)={0.01xx for x<0 for x0

一阶导 f ′ ( x ) = { 0.01  for  x < 0 1  for  x ≥ 0 f^{\prime}(x)=\left\{\begin{array}{ll}0.01 & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}\right. f(x)={0.011 for x<0 for x0

图形

Parameteric rectified linear unit(参数化线性整流函数,PReLU)

描述: 也是ReLU的一个变化,与Leaky ReLU类似,只不过PReLU将小于零部分的斜率换成了可变参数α。这种变化使值域会依据α不同而不同。

方程式 f ( α , x ) = { α x  for  x < 0 x  for  x ⩾ 0 f(\alpha, x)=\left\{\begin{array}{ll}\alpha x & \text { for } x<0 \\ x & \text { for } x \geqslant 0\end{array}\right. f(α,x)={αxx for x<0 for x0

一阶导 f ′ ( α , x ) = { α  for  x < 0 1  for  x ≥ 0 f^{\prime}(\alpha, x)=\left\{\begin{array}{ll}\alpha & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}\right. f(α,x)={α1 for x<0 for x0

图形

Randomized leaky rectified linear unit(带泄露随机线性整流函数,RReLU)

描述: 在PReLU基础上将α变成了随机数。

方程式 f ( α , x ) = { α x  for  x < 0 x  for  x ⩾ 0 f(\alpha, x)=\left\{\begin{array}{ll}\alpha x & \text { for } x<0 \\ x & \text { for } x \geqslant 0\end{array}\right. f(α,x)={αxx for x<0 for x0

一阶导 f ′ ( α , x ) = { α  for  x < 0 1  for  x ≥ 0 f^{\prime}(\alpha, x)=\left\{\begin{array}{ll}\alpha & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}\right. f(α,x)={α1 for x<0 for x0

图形

Exponential linear unit(指数线性函数,ELU)

描述: ELU小于零的部分采用了负指数形式,相较于ReLU权重可以有负值,并且在输入取较小值时具有软饱和的特性,提升了对噪声的鲁棒性

方程式 f ( α , x ) = { α ( e x − 1 )  for  x ≤ 0 x  for  x > 0 f(\alpha, x)=\left\{\begin{array}{ll}\alpha\left(e^{x}-1\right) & \text { for } x \leq 0 \\ x & \text { for } x>0\end{array}\right. f(α,x)={α(ex1)x for x0 for x>0

一阶导 f ′ ( α , x ) = { f ( α , x ) + α  for  x ≤ 0 1  for  x > 0 f^{\prime}(\alpha, x)=\left\{\begin{array}{ll}f(\alpha, x)+\alpha & \text { for } x \leq 0 \\ 1 & \text { for } x>0\end{array}\right. f(α,x)={f(α,x)+α1 for x0 for x>0

图形

Scaled exponential linear unit(扩展指数线性函数,SELU)

描述: ELU的一种变化,引入超参λ和α,并给出了相应取值,这些取值在原论文中(Self-Normalizing Neural Networks)详细推导过程

方程式 f ( α , x ) = λ { α ( e x − 1 )  for  x < 0 x  for  x ≥ 0 f(\alpha, x)=\lambda\left\{\begin{array}{ll}\alpha\left(e^{x}-1\right) & \text { for } x<0 \\ x & \text { for } x \geq 0\end{array}\right. f(α,x)=λ{α(ex1)x for x<0 for x0 w i t h λ = 1.0507 a n d α = 1.67326 with \quad \lambda=1.0507 \quad and \quad \alpha=1.67326 withλ=1.0507andα=1.67326

一阶导 f ′ ( α , x ) = λ { α ( e x )  for  x < 0 1  for  x ≥ 0 f^{\prime}(\alpha, x)=\lambda\left\{\begin{array}{ll}\alpha\left(e^{x}\right) & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}\right. f(α,x)=λ{α(ex)1 for x<0 for x0

图形

SoftPlus函数

描述: 是ReLU的平滑替代,函数在任何地方连续且值域非零,避免了死神经元。不过因不对称且不以零为中心,可以影响网络学习。由于导数必然小于1,所以也存在梯度消失问题。

方程式

f ( x ) = ln ⁡ ( 1 + e x ) f(x)=\ln \left(1+e^{x}\right) f(x)=ln(1+ex)

一阶导

f ′ ( x ) = 1 1 + e − x f^{\prime}(x)=\frac{1}{1+e^{-x}} f(x)=1+ex1

图形

Bent identity(弯曲恒等函数)

描述: 可以理解为identity和ReLU之间的一种折中,不会出现死神经元的问题,不过存在梯度消失和梯度爆炸风险。

方程式

f ( x ) = x 2 + 1 − 1 2 + x f(x)=\frac{\sqrt{x^{2}+1}-1}{2}+x f(x)=2x2+1 1+x

一阶导

f ′ ( x ) = x 2 x 2 + 1 + 1 f^{\prime}(x)=\frac{x}{2 \sqrt{x^{2}+1}}+1 f(x)=2x2+1 x+1

图形

Sinusoid(正弦函数)

描述: Sinusoid作为激活函数,为神经网络引入了周期性,且该函数处处联系,以零点对称。

方程式

f ( x ) = sin ⁡ ( x ) f(x)=\sin (x) f(x)=sin(x)

一阶导

f ′ ( x ) = cos ⁡ ( x ) f^{\prime}(x)=\cos (x) f(x)=cos(x)

图形

Sinc函数

描述: Sinc函数在信号处理中尤为重要,因为它表征了矩形函数的傅立叶变换。作为激活函数,它的优势在于处处可微和对称的特性,不过容易产生梯度消失的问题。

方程式

f ( x ) = { 1  for  x = 0 sin ⁡ ( x ) x  for  x ≠ 0 f(x)=\left\{\begin{array}{ll}1 & \text { for } x=0 \\ \frac{\sin (x)}{x} & \text { for } x \neq 0\end{array}\right. f(x)={1xsin(x) for x=0 for x=0

一阶导

f ′ ( x ) = { 0  for  x = 0 cos ⁡ ( x ) x − sin ⁡ ( x ) x 2  for  x ≠ 0 f^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x=0 \\ \frac{\cos (x)}{x}-\frac{\sin (x)}{x^{2}} & \text { for } x \neq 0\end{array}\right. f(x)={0xcos(x)x2sin(x) for x=0 for x=0

图形

Gaussian(高斯函数)

描述: 高斯激活函数不常用。

方程式

f ( x ) = e − x 2 f(x)=e^{-x^{2}} f(x)=ex2

一阶导

f ′ ( x ) = − 2 x e − x 2 f^{\prime}(x)=-2 x e^{-x^{2}} f(x)=2xex2

图形

Hard Sigmoid(分段近似Sigmoid函数)

描述: 是Sigmoid函数的分段线性近似,更容易计算,不过存在梯度消失和神经元死亡的问题
方程式

f ( x ) = { 0  for  x < − 2.5 0.2 x + 0.5  for  − 2.5 ≥ x ≤ 2.5 1  for  x > 2.5 f(x)=\left\{\begin{array}{ll}0 & \text { for } x<-2.5 \\ 0.2 x+0.5 & \text { for }-2.5 \geq x \leq 2.5 \\ 1 & \text { for } x>2.5\end{array}\right. f(x)= 00.2x+0.51 for x<2.5 for 2.5x2.5 for x>2.5

一阶导

f ′ ( x ) = { 0  for  x < − 2.5 0.2  for  − 2.5 ≥ x ≤ 2.5 0  for  x > 2.5 f^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x<-2.5 \\ 0.2 & \text { for }-2.5 \geq x \leq 2.5 \\ 0 & \text { for } x>2.5\end{array}\right. f(x)= 00.20 for x<2.5 for 2.5x2.5 for x>2.5

图形

Hard Tanh(分段近似Tanh函数)

描述: Tanh激活函数的分段线性近似。

方程式

f ( x ) = { − 1  for  x < − 1 x  for  − 1 ≥ x ≤ 1 1  for  x > 1 f(x)=\left\{\begin{array}{ll}-1 & \text { for } x<-1 \\ x & \text { for }-1 \geq x \leq 1 \\ 1 & \text { for } x>1\end{array}\right. f(x)= 1x1 for x<1 for 1x1 for x>1

一阶导

f ′ ( x ) = { 0  for  x < − 1 1  for  − 1 ≥ x ≤ 1 0  for  x > 1 f^{\prime}(x)=\left\{\begin{array}{ll}0 & \text { for } x<-1 \\ 1 & \text { for }-1 \geq x \leq 1 \\ 0 & \text { for } x>1\end{array}\right. f(x)= 010 for x<1 for 1x1 for x>1

图形

LeCun Tanh(也称Scaled Tanh,按比例缩放的Tanh函数)

描述: Tanh的缩放版本

方程式

f ( x ) = 1.7519 tanh ⁡ ( 2 3 x ) f(x)=1.7519 \tanh \left(\frac{2}{3} x\right) f(x)=1.7519tanh(32x)

一阶导

f ′ ( x ) = 1.7519 ∗ 2 3 ( 1 − tanh ⁡ 2 ( 2 3 x ) ) = 1.7519 ∗ 2 3 − 2 3 ∗ 1.7519 f ( x ) 2 \begin{aligned} f^{\prime}(x) &=1.7519 * \frac{2}{3}\left(1-\tanh ^{2}\left(\frac{2}{3} x\right)\right) \\ &=1.7519 * \frac{2}{3}-\frac{2}{3 * 1.7519} f(x)^{2} \end{aligned} f(x)=1.751932(1tanh2(32x))=1.75193231.75192f(x)2

图形

Symmetrical Sigmoid(对称Sigmoid函数)

描述: 是Tanh的一种替代方法,比Tanh形状更扁平,导数更小,下降更缓慢。

方程式

f ( x ) = tanh ⁡ ( x / 2 ) = 1 − e − x 1 + e − x \begin{aligned} f(x) &=\tanh (x / 2) \\ &=\frac{1-e^{-x}}{1+e^{-x}} \end{aligned} f(x)=tanh(x/2)=1+ex1ex

一阶导

f ′ ( x ) = 0.5 ( 1 − tanh ⁡ 2 ( x / 2 ) ) = 0.5 ( 1 − f ( x ) 2 ) \begin{aligned} f^{\prime}(x) &=0.5\left(1-\tanh ^{2}(x / 2)\right) \\ &=0.5\left(1-f(x)^{2}\right) \end{aligned} f(x)=0.5(1tanh2(x/2))=0.5(1f(x)2)

图形

Complementary Log Log函数

描述: 是Sigmoid的一种替代,相较于Sigmoid更饱和。

方程式

f ( x ) = 1 − e − e x f(x)=1-e^{-e^{x}} f(x)=1eex

一阶导

f ′ ( x ) = e x ( e − e x ) = e x − e x f^{\prime}(x)=e^{x}\left(e^{-e^{x}}\right)=e^{x-e^{x}} f(x)=ex(eex)=exex

图形

Absolute(绝对值函数)

描述: 导数只有两个值。

方程式

f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x

一阶导

f ′ ( x ) = { − 1  for  x < 0 1  for  x > 0 ?  for  x = 0 f^{\prime}(x)=\left\{\begin{array}{ll}-1 & \text { for } x<0 \\ 1 & \text { for } x>0 \\ ? & \text { for } x=0\end{array}\right. f(x)= 11? for x<0 for x>0 for x=0

图形

5、transformer FFN层用的激活函数是什么?为什么?

ReLU。ReLU的优点是收敛速度快、不会出现梯度消失or爆炸的问题、计算复杂度低。

6、 Bert、GPT、GPT2中用的激活函数是什么?为什么?

Bert、GPT、GPT2、RoBERTa、ALBERT都是用的Gelu。

GELU ⁡ ( x ) = x P ( X ≤ x ) = x Φ ( x ) \operatorname{GELU}(x)=x P(X \leq x)=x \Phi(x) GELU(x)=xP(Xx)=xΦ(x)

直观理解:x做为神经元的输入,P(X<=x)越大,x就越有可能被保留;否则越小,激活函数输出就趋近于0.

7、如何选择激活函数

  • 用于分类器时,二分类为Sigmoid,多分类为Softmax,这两类一般用于输出层;

  • 对于长序列的问题,隐藏层中尽量避免使用Sigmoid和Tanh,会造成梯度消失的问题;

  • Relu在Gelu出现之前在大多数情况下比较通用,但也只能在隐层中使用;

  • 现在2022年了,隐藏层中主要的选择肯定优先是Gelu、Swish了。

8、ReLU的优缺点?

优点

  • 从计算的角度上,Sigmoid和Tanh激活函数均需要计算指数,复杂度高,而ReLU输入一个数值即可得到激活值;

  • ReLU函数被认为有生物上的解释性,比如单侧抑制、宽兴奋边界(即兴奋程度 也可以非常高)人脑中在同一时刻大概只有1 ∼ 4%的神经元处于活跃状态,所以单侧抑制提供了网络的稀疏表达能力,宽激活边界则能有效解决梯度消失等问题。

缺点

  • ReLU和Sigmoid一样,每次输出都会给后一层的神经网络引入偏置偏移, 会影响梯度下降的效率。

  • ReLU神经元死亡的问题,不正常的一次参数更新,可能是使得激活项为0,以后的梯度更新也为0,神经元死亡。

【项目推荐】

面向小白的顶会论文核心代码库:https://github.com/xmu-xiaoma666/External-Attention-pytorch

面向小白的YOLO目标检测库:https://github.com/iscyy/yoloair

面向小白的顶刊顶会的论文解析:https://github.com/xmu-xiaoma666/FightingCV-Paper-Reading

参考:

https://www.jianshu.com/p/466e54432bac

https://zhuanlan.zhihu.com/p/354013996

https://blog.csdn.net/qq_22795223/article/details/106184310

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在计算机视觉方向上,使用ReLU作为CNN(卷积神经网络)的激活函数有以下好处: 1. 加速收敛速度:ReLU的非线性特性可以帮助网络更快地收敛。相比于传统的激活函数如sigmoid和tanh,ReLU在正区间的斜率恒为1,避免了梯度消失的问题,从而加速了网络的训练速度。 2. 提高模型表达能力:ReLU的非线性特性可以更好地拟合复杂的函数关系,从而提高模型的表达能力。在计算机视觉任务中,图像往往具有复杂的非线性特征,ReLU可以更好地捕捉这些特征,从而提高模型的准确性。 3. 抑制不必要的响应:ReLU在输入为负数时输出为0,实现了稀疏激活性。这意味着一些神经元可以完全不被激活,从而抑制不必要的响应。在计算机视觉任务中,许多图像区域可能是背景或无关区域,ReLU可以帮助网络忽略这些区域,提高模型的鲁棒性和泛化能力。 4. 减少过拟合风险:ReLU的稀疏激活性有助于减少模型的参数数量,降低了过拟合的风险。过拟合是指模型在训练数据上表现很好,但在测试数据上表现较差的现象。通过使用ReLU作为激活函数,可以降低模型的复杂度,提高泛化能力,从而减少过拟合的问题。 综上所述,ReLU作为CNN的激活函数在计算机视觉方向上具有加速收敛速度、提高模型表达能力、抑制不必要的响应和减少过拟合风险等好处,因此被广泛应用于图像分类、目标检测、图像分割等计算机视觉任务中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值