题解 luoguP2155 【[SDOI2008]沙拉公主的困惑】

这题真喵喵的毒瘤,写的时候被时空双卡。

为了发泄愤怒,我来水一篇题解

题意:求 1 − n ! 1-n! 1n! 中与 m ! m! m! 互质的数的个数 ( m &lt; = n ) (m&lt;=n) (m<=n)

我们发现小于 m ! m! m! 的数中,与 m ! m! m! 互质的数有 φ ( m ! ) φ(m!) φ(m!)个,那如何求大于 m ! m! m! 的数中与 m ! m! m! 互质的数的个数呢?

引理:若 a , b a,b a,b互质,则 a + b × k a+b\times k a+b×k b b b互质。

证明:当 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1时, g c d ( b , a % b ) = 1 gcd(b,a\% b)=1 gcd(b,a%b)=1

∵ a % b = a − b × k \because a\% b=a-b\times k a%b=ab×k

∴ g c d ( b , a − b × k ) = 1 \therefore gcd(b,a-b\times k)=1 gcd(b,ab×k)=1

得证。

那么对于一个小于 m ! m! m! 且与 m ! m! m! 互质的数 x x x x + 1 × m ! x+1\times m! x+1×m! x + 2 × m ! x+2\times m! x+2×m! …都与 m ! m! m! 互质。

因为 n &gt; = m n&gt;=m n>=m,所以 n ! n! n! m ! m! m!的倍数,那么 1 − n ! 1-n! 1n! 中与 m ! m! m! 互质的数的个数,根据上面的结论,很显然就是:

r e s = φ ( m ! ) × n ! m ! = m ! × ∏ i = 1 k ( p i − 1 p i ) × n ! m ! = n ! × ∏ i = 1 k ( p i − 1 p i ) res=φ(m!)\times \frac{n!}{m!}=m!\times \prod\limits_{i=1}^{k}\left (\dfrac{p_i-1}{p_i}\right)\times \frac{n!}{m!}=n!\times \prod\limits_{i=1}^{k}\left (\dfrac{p_i-1}{p_i}\right) res=φ(m!)×m!n!=m!×i=1k(pipi1)×m!n!=n!×i=1k(pipi1)

我们用 a n s ans ans数组记录最后的式子的右边的东西, a n s [ i ] ans[i] ans[i]表示 k k k i i i时右边东西的值。 j c [ i ] jc[i] jc[i]表示 i ! i! i! n y [ i ] ny[i] ny[i]表示 i i i的逆元。

根据公式,很容易就能写出,答案 = j c [ n ] × a n s [ m ] =jc[n]\times ans[m] =jc[n]×ans[m]。预处理出三个数组,就能做到 O ( 1 ) O(1) O(1)查询,这题就做完了,撒花~。

空间有点紧,不能都开 l o n g   l o n g long \ long long long,不该开的就不用开了。

#include<bits/stdc++.h>
#define ts cout<<"ok"<<endl
#define oo (1e18)
#define ll long long
#define LL unsigned long long
#define hh puts("")
using namespace std;
int T,top,n,m,ny[10000005],ans[10000005],pr[6000005];
bool v[10000005];
ll r,jc[10000005];
inline int read(){
    int ret=0,ff=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') ff=-1;ch=getchar();}
    while(isdigit(ch)){ret=(ret<<3)+(ret<<1)+(ch^48);ch=getchar();}
    return ret*ff;
}
signed main(){
    scanf("%d%lld",&T,&r);
    jc[0]=jc[1]=1;
    ny[0]=ny[1]=1;
    ans[0]=ans[1]=1;
    for(int i=2;i<=10000000;i++){
        jc[i]=jc[i-1]*(ll)i%r;
        ny[i]=(ll)(r-r/i)*ny[r%i]%r;
        if(!v[i]) pr[++top]=i;
        for(int j=1;j<=top&&i*pr[j]<=10000000;j++){
            v[i*pr[j]]=1;
            if(i%pr[j]==0) break;
        }
    }
    for(int i=2;i<=10000000;i++){
        ans[i]=ans[i-1];
        if(!v[i]) ans[i]=(ll)ans[i]%r*(i-1)%r*ny[i]%r;
    }
    while(T--){
        n=read(),m=read();
        ll res=(ll)ans[m]%r*jc[n]%r;
        printf("%lld\n",res);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值