LeetCode198. 打家劫舍

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Jaster_wisdom/article/details/81592098

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。

示例 1:

输入: [1,2,3,1]
输出: 4
解释: 偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

示例 2:

输入: [2,7,9,3,1]
输出: 12
解释: 偷窃 1 号房屋 (金额 = 2), 偷窃 3 号房屋 (金额 = 9),接着偷窃 5 号房屋 (金额 = 1)。
     偷窃到的最高金额 = 2 + 9 + 1 = 12 。

题目分析:很好的一道题,动态规划求解。用dp[i]保存有i户人家时,能够偷窃到的最高的金额。显然,dp[1] = nums[1],dp[2] = max(nums[1],nums[2]),当i>=3时, dp[i] = max(dp[i-1],dp[i-2]+nums[i]),解释一下,如果第i户人家不偷的话,则dp[i] = dp[i-1];若第i户人家偷的话,dp[i] = dp[i-2]+nums[i],能偷的最高金额为两者的最大值。

代码展示:
 

class Solution {
public:
    int rob(vector<int>& nums) {
        vector<int> dp;
        if(nums.size()==0)
            return 0;
        else if(nums.size()==1)
            return nums[0];
        dp.push_back(nums[0]);
        dp.push_back(max(nums[0],nums[1]));
        for(int i=2;i<nums.size();i++){
            dp.push_back(max(dp[i-1],dp[i-2]+nums[i]));
        }
        return dp[nums.size()-1];
    }
};

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页