本文转载自:历时两月,终拿字节跳动offer,算法面试题分享「带答案」
一. 最小生成树算法
- 连通图:在无向图G中,若从顶点i到顶点j有路径,则称顶点i和顶点j是连通的。若图G中任意两个顶点都连通,则称G为连通图。
- 生成树:一个连通图的生成树是该连通图的一个极小连通子图,它含有全部顶点,但只有构成一个数的(n-1)条边。
- 最小生成树:对于一个带权连通无向图G中的不同生成树,各树的边上的 权值之和最小。构造最小生成树的准则有三条:
- 必须只使用该图中的边来构造最小生成树。
- 必须使用且仅使用(n-1)条边来连接图中的n个顶点。
- 不能使用产生回路的边。
1. Prim算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
- 初始化U={v},以v到其他顶点的所有边为候选边(U中所有点到其他顶点的边)。
- 重复以下步骤(n-1)次,使得其他(n-1)个顶点被加入到U中。
- 从候选边中挑选权值最小的边加入TE,设该边在V-U(这里是集合减)中的顶点是k,将k加入U中。
- 考察当前V-U中的所有顶点j,修改候选边,若边(k,j)的权值小于原来和顶点j关联的候选边,则用(k,j)取代后者作为候选边。
2. Kruskal算法
假设G=(V,E)是一个具有n个顶点的带权连通无向图,T(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,则由G构造从起始顶点v出发的最小生成树T的步骤为:
- 置U的初始值等于V(即包含G中的全部顶点),TE的初始值为空
- 将图G中的边按权值从小到大的顺序依次选取,若选取的边未使生成树T形成回路,则加入TE,否则放弃,知道TE中包含(n-1)条边为止。
二. 最短路径算法
1. Dijkstra —— 贪心算法
从一个顶点到其余顶点的最短路径
设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第1组为已求出最短路径的顶点(用S表示,初始时S只有一个源点,以后每求得一条最短路径v,…k,就将k加到集合S中,直到全部顶点都加入S)。第2组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序把第2组的顶点加入S中。
步骤:
- 初始时,S只包含源点,即
S={v}
,顶点v到自己的距离为0。U包含除v外的其他顶点,v到U中顶点i的距离为边上的权。 - 从U中选取一个顶点u,顶点v到u的距离最小,然后把顶点u加入S中。
- 以顶点u为新考虑的中间点,修改v到U中各个点的距离。
- 重复以上步骤知道S包含所有顶点。
2. Floyd —— 动态规划
Floyd 算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题。该算法的时间复杂度为$$O(N^{3})$$
,空间复杂度为 $$O(N^{2})$$
设$$D_{i,j,k}$$
为从$$i$$
到$$j$$
的只以$$(1..k)$$
集合中的节点为中间节点的最短路径的长度。
$$ D{i,j,k}=\begin{cases} D{i,j,k-1} &
最短路径不经过k D{i,k,k-1}+D{k,j,k-1} &
最短路径经过k \end{cases} $$
因此,$$D{i,j,k}=min(D{i,k,k-1}+D{k,j,k-1},D{i,j,k-1})$$
。伪代码描述如下:
// let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
for each vertex v
dist[v][v] ← 0
for each edge (u,v)
dist[u][v] ← w(u,v) // the weight of the edge (u,v)
for k from 1 to |V|