【导读】典型的MLLM可以抽象为三个模块,即预训练的Modality Encoder、预训练的LLM、连接它们的模态接口Connector。本文主要介绍LLM Backbone,它主要负责处理各种模态的特征,进行语义理解、推理和决策。
MLLM架构图
===
多模态大模型系列:
多模态基础(一):理解多模态
多模态基础(二):OpenAI经典之作CLIP vs LMM的黎明Flamingo
多模态大模型(MLLM): Modality Encoder
一、LLM Backbone 简介
在MLLM中作为大脑的关键模块是大语言模型(LLM),与从头开始训练一个LLM相比,使用预训练的模型更为高效和实用。通过在网络语料库上的大规模预训练,LLMs已经嵌入了丰富的世界知识,并展现出强大的泛化和推理能力。
大语言模型(LLM)发展时间线
LLM的结构主要包含三类:
-
Encoder-Only (Autoencoding) Models: 仅编码器模型,也称为自动编码模型,是使用掩码语言模型进行预训练的,在此过程中,输入序列中的某些tokens被随机mask,模型的目标是预测被mask的tokens以重建原始句子。代表模型有:BERT _、RoBERTa,_由于MLLM大部分为生成模型,因此在MLLM中该结构模型存在较少
-
**Decoder-Only (Autoregressive) Models:**仅解码器模型,使用因果语言模型进行预训练,其目标是根据前面的tokens序列预测下一个token。此过程也称为完整语言建模。与仅编码器模型不同,仅解码器模型会mask输入序列,他们迭代地预测下一个token,创建单向上下文。这种类型的模型利用原始架构中的解码器组件,而无需编码器。代表模型有:_GPT、BLOOM、Qwen、LLAMA,_目__前__该__结构为MLLM的主流
-
Encoder-Decoder (Sequence-to-Sequence)Models :序列到序列模型结合了原始 Transformer 架构的编码器和解码器部分。Sequence-to-sequence模型对于翻译、摘要和问答任务非常有用,代表模型有:T5、BART
_LLM的三种结构示意图
_
另外,对大型语言模型的**混合专家模型(Mixture of Experts,MoE)**的探索引起了越来越多的关注,与Dense模型相比,稀疏架构通过选择性激活参数,可以在不增加计算成本的情况下扩大总参数规模。即在相同计算资源下,训练速度更快,而且可以训练更大的模型。实证上,MoE实现在几乎所有基准测试上都比Dense模型表现更好。代表模型:Mixtral 8x7B
Mixtral 8x7B
后面将主要介绍正常版和迷你版的MLLM使用的LLM backbone。
二、Normal MLLM(正常版)
按照多模态的下游任务统计: vision-to-language、visual grounding and region-level understand、image generation and editing,基于这三类任务使用的LLM进行的统计:其中LLAMA(占比43%),Vicuna(占比27%),其他的LLM模型包括:FlanT5、OPT、Qwen(支持中文)、Mixtral-8x7B等。
可以发现LLAMA和 Vicuna 占据了 70%,成为MLLM的主流语言模型。
来源:https://arxiv.org/pdf/2402.12451v1
三、Mini MLLM(迷你版)
高效多模态大语言模型是为了解决高昂的训练和推理成本而衍生出来的,这种轻量级的MLLM能够更方便的在学术界和工业界广泛应用,尤其是边缘计算的场景中。
迷你版的 MLLM使用的 LLM 模型主流参数规模在3B 以内,其中 Phi系列占比47.6%,其他包括 MobileLLaMA、Qwen、Gemma2B等
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。