【论文综述+多模态】腾讯发布的多模态大语言模型(MM-LLM)综述(2024.02)

本文介绍了MM-LLMs,一种结合预训练单模态模型和多模态微调的技术,通过优化模态对齐和与人类意图的匹配,提升多模态任务能力。研究重点在于模型框架、训练流程和性能评估,展示了从理解到生成的演进趋势,以及轻量化部署的挑战和未来发展策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:24.02.MM-LLMs: Recent Advances in MultiModal Large Language | 国内-链接
实时网站:https://mm-llms.github.io
参考说明1-readpaper:https://mp.weixin.qq.com/s/ESUVe1aTYFLVJ10S9c1dBg
在这里插入图片描述

一、什么是MM-LLM ?

多模态大语言模型:Multimodal Large Language Models
MM-LLM = 预训练单模态模型( 含LLMs) + 微调对齐所有模态 + 输出调整

MM-LLMs 利用现成的预训练单模态基础模型,
特别是强大的大型语言模型(LLMs), 作为认知核心,赋予各种多模态任务能力。
LLMs 提供了稳健的语言生成、zero-shot 迁移能力和上下文学习(ICL)等可取特性

在这一领域中,主要关注点是通过多模态预训练(MM PT, Pre-Training)+ 多模态指令调整(MM IT)pipeline 来优化模态之间的对齐,以及与人类意图的对齐(aligning with human intent)。

1.1 发展历程

  1. 最初的研究
    图像-文本理解(例如 BLIP-2,LLaVA,MiniGPT-4OpenFlamingo 等工作);
    视频-文本理解(例如 VideoChat,Video-ChatGPT 和 LLaMA-VID 等工作);
    音频-文本理解(例如 Qwen-Audio)等任务。

  2. 随后,MM-LLMs 的能力扩展到支持特定模态生成。
    这包括具有图像-文本输出的任务,例如 GILL,Kosmos-2,Emu 和 MiniGPT-5 等;
    以及具有语音/音频-文本输出的任务,例如 SpeechGPT 和 AudioPaLM 等工作

  3. 最近的研究努力集中在模仿类人任意-任意模态转换
    将 LLMs 与外部工具结合起来,实现,现接近任意-任意的多模态理解和生成,
    例如 Visual-ChatGPT,HuggingGPT 和 AudioGPT

二、模型框架

参考链接:https://zhuanlan.zhihu.com/p/680487634

我们将一般模型架构分解为五个组件&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾小蛙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值