[DP] Minimum Path Sum

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

分析:符合DP求解条件。

递推关系:dp[i][j] = grid[i][j] + max{dp[i][j - 1], [i - 1][j]}

public class Solution {
    public int minPathSum(int[][] grid) {
        int row = grid.length;
        int column = grid[0].length;
        if (row == 0 || column == 0) {
            return 0;
        }
        
        int[][] dp = new int[row][column];;
        for (int i = 0; i < row; ++i) {
            for (int j = 0; j < column; ++j) {
                if (i == 0 && j != 0) {
                    dp[0][j] = dp[0][j - 1] + grid[0][j];
                } else if (i != 0 && j == 0) {
                    dp[i][0] = dp[i-1][0] + grid[i][0];
                } else if (i == 0 && j == 0) {
                    dp[0][0] = grid[0][0];
                } else {
                    dp[i][j] = grid[i][j] + Math.min(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
        return dp[row - 1][column - 1];
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值