【论文总结】Aligning users across social networks using network embedding

Aligning users across social networks using network embedding

研究目标:
使用network embedding 方法实现跨社交网络用户对齐

模型描述:
使用网络表示学习中的网络嵌入模型分别将用户的关注与被关注关系作为输入、输出上下文向量。我们称为IONE模型。模型可以保存用户在嵌入空间的相似度。

将已知和潜在的锚定用户作为模型的硬约束和软约束。将所有因素加入目标函数同时实现网络嵌入学习和用户对齐。

模型框架:
1、input-output network embedding:
我们将一个节点的父节点作为它的输入上下文,子节点作为输出上下文,因此,一个节点用三个节点向量来表示{ui,ui’,ui’’},如图
在这里插入图片描述
为了学习网络嵌入,对于每条边(vi,vj),vi作为输入节点相比于其他节点产生vj的概率为:

在这里插入图片描述
vj作为输出节点相比于其他节点产生vi的概率为:
在这里插入图片描述
p1和p2的经验对应分别为:
在这里插入图片描述
在这里插入图片描述

din 与dout类似。

通过最小化p1与p1的经验对应之间的KL距离,p2与p2的经验对应之间的KL距离,可以推得IONE模型。

2、多网络嵌入对齐:
给定两个网络X和Y,我们定义锚定节点为在一个网络X中的节点知道另一个节点在网络Y中的特定联系,就是已知两个节点属于同一个人。

该模型要实现两个目标:
目标1:两个网络中节点的结构相似度在网络嵌入中也要表现的尽可能相似
目标2:锚定节点在嵌入空间的中的表示要相符,在嵌入空间中相近的节点可以认为是网络对齐中好的候选者。

为了实现目标1,我们最小化P1P2和它们的经验对应的KL距离,并将Vi作为输入节点产生Vj的重要性权重定义为λi,out,则目标函数为:
在这里插入图片描述

通过将λout作为节点vi的出度dout,λin作为vj的入度din,可将目标函数改写为:
在这里插入图片描述
为了实现目标2,我们定义
在这里插入图片描述

为viX和vkY是被预训练分类器预测出来的属于同一个用户。对于锚定节点,我们设Pa=1。

对于非锚定节点,pa可看作vkY在网络Y中作为输入上下文产生viX的概率。因此,我们设经验概率
在这里插入图片描述
再次最小化p和它的经验分布之间的KL距离,得到目标函数
在这里插入图片描述
跨网络对齐可以通过最小化结合的目标函数O=O1+O2得出,O1保证了相同的输入输出上下文在嵌入空间中靠的更近,O2加入锚定节点强化了两个嵌入(embedding)之间的学习。

模型优化:
我们通过SGD去优化目标函数,其梯度为:
在这里插入图片描述
负采样的方法去近似表示上式条件概率P1,
在这里插入图片描述

总体算法如下
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值