Predict Anchor Links across Social Networks via an Embedding Approach
目标
找两个不同的社交网络中的anchor link
方法
方法分为两部分
- embedding
- matching
总体的目标函数就是最小化embedding的目标函数和matching的目标函数:
其中Le和Lm表示embedding和matching的loss。
embedding步骤的输入是source network Gs和target network Gt,输出是source network 的节点表示Zs和target network 的节点表示Zt。T是anchor link对。
matching步骤的输入是source network Gs和target network Gt,和已知的anchor link T,目标是学习到match function o。
网络构建
两个社交网络互补,比如在facebook中用户i和j有连接,但是在Twitter中没有连接,那么我们就要在Twitter网络中加入i和j之间的连接。在论文中,将两个网络成为source network和target network,如图的补充部分:
对于Gs补充边后的数学表达:
embedding
对于两个社交网络(比如Twitter和Facebook),分别embedding,将节点变成向量。
embedding的目标函数:
意思是为了最大化相关的节点的相似性,也就是最大化zi和zj相关节点对的点乘。第一项是目标,第二项是negative sample。
matching
在embedding后的基础上,通过对已知的anchor link的参数学习,来得到match function的参数。目标函数:
在这里,theta就是match function的参数。
在学习的时候,这个映射函数可以是线性的,也可以通过多层网络变成非线形的。
总目标函数
总目标函数就是Le+Lm