CF Global Round 20:F1. Array Shuffling(最少交换顺序)

博客主要探讨了如何通过最少的交换次数将一个数组b转换成给定的目标数组a。提出了一个结论,即最少操作数等于数组长度减去环的数量,并且环的数量等于出现次数最多的元素的个数。为了最大化操作次数,需要找到最少环的构造方法,通过排序和使用队列记录环的信息。算法实现包括对数组排序、寻找环和记录环的过程。
摘要由CSDN通过智能技术生成

题目链接:F1. Array Shuffling

题面:

input

2
2
2 1
4

1 2 3 3

output

1 2
3 3 2 1 

题意:给定长度为n的数组a,求一个数组b。可以对b进行交换的操作变成a,记对数组b通过交换变成a的最小操作次数为x。要求构造一个数组b,使得b变为a的最小操作次数最大。

此处有一个结论:排序算法-最少交换次数证明_玉曦的博客-CSDN博客_交换次数最少的排序算法

结论就是:如果想要把a[i]->b[j],我们就建立一个条件i->j

最少操作数=n-环的数量

例如:

a: 1 2 3 4 5 6
b: 4 6 1 3 2 5

 

最少操作数为 n-2 。

那么我们希望最少操作数最多,则希望环的数量最少。

如果需要环最少,每个环中无重复元素,则环的个数其实就等于出现次数最多的次数。

 

那么问题来了,如何求最少的环呢?求了后又该如何记录呢?

环的个数:上面描述中可以发现,重复元素最多的次数,就是环的个数。因为每个环中不能出现重复的元素。所以若x为重复的元素,且重复个数为cnt[x],那么就会有cnt[x]个环,每个环中都有一个x。

如何记录:可以对a数组进行排序。排序的方式以重复个数最大为优先,同样的重复个数以数大/小为优先。并存入到一个vector<int> vec中

例如对a:5 6 5 6 1 2 1 1排序的话就变成

1 1 1 5 5 6 6 2或者1 1 1 6 6 5 5 2就行。若以第一个排序方式为例。

形成的环一定是1->5->6->1,1->5->6->1,1->2->1。这样的三个环。

定义二维的队列:unordered_map<int,queue> que;

从前向后遍历,每次把后面vec[i+cnt[vec[i]]]的数的数作为vec[i]的后继,并把这个数标记已经在一个环中了。

若发现vec[i+cnt[vec[i]]]已经被标记过了,那么该数的后继就是最大的重复数。

#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+50;
int n;
int a[maxn];
bool st[maxn];
unordered_map<int,int> cnt;
unordered_map<int,queue<int>> que;
int cmp(int a,int b){
    if(cnt[a]!=cnt[b]) return cnt[a]>cnt[b];
    return a>b;
}
void solve(){
    cnt.clear();
    scanf("%d",&n);
    int mx=0;
    for(int i=0;i<n;i++) scanf("%d",&a[i]),cnt[a[i]]++,mx=max(mx,cnt[a[i]]);
    vector<int> vec;
    for(int i=0;i<n;i++) vec.push_back(a[i]);
    sort(vec.begin(),vec.end(),cmp);
    for(int i=0;i<n;i++){
        int t=vec[i];
        if(st[i+cnt[t]]||i+cnt[t]>=n){
            que[t].push(vec[0]);
        }else{
            que[t].push(vec[i+cnt[t]]);
            st[i+cnt[t]]=true;
        }
    }
    for(int i=0;i<n;i++){
        printf("%d ",que[a[i]].front());
        que[a[i]].pop();
    }printf("\n");
    for(int i=1;i<=n;i++)
        while(que[i].size())
            que[i].pop();
    for(int i=1;i<=n;i++) st[i]=false;
}
int main(){
    int t;scanf("%d",&t);
    while(t--) solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值