回溯法相关——约翰逊·贝尔曼法则 Johnson-Bellman's Rule

本文介绍了约翰逊-贝尔曼法则在施工组织设计中如何解决流水作业的次序优化问题,以达到总工期最短的目标。基本原理是选择先行工序施工工期短的优先,通过递归式求解最优解。关键结论是:方案1优于方案2的充分必要条件是max{ t1j,t2i } ≥ max{ t1i,t2j }。
摘要由CSDN通过智能技术生成

1.前言

流水作业法在目前的施工组织设计应用较广,但在实际应用中常常遇到如何确定施工段合理次序的问题。因为一个任务施工分成若干个施工段后,每个施工段都要经过相同的若干道工序,最然由施工工艺决定的工序顺序是不可以改变的,但是每道工序在各个施工段上的流水顺序确实可以改变的,不同的流水顺序总工期不同。这就要求我们要找出一个总工期最短的流水次序,实践证明,约翰逊-贝尔曼法则能够较好地解决这个问题。

2. 基本原理

先行工序施工工期短的要排在前面施工后续工序施工工期短的应安排在后面施工。亦即,首先列出m项任务的“工序工期表,然后在表中依次选取最小数,而且每列只选一次,若此数属于先行工序,则从前排,反之,则从后排。

 3.推导与应用

有n个机器零件的集合记为:S={J1,J2,J3…,Jn},设最优加工方案第一个加工的零件是i,当第一台机器加工零件i时,第二台机器需要t时间空闲下来。该加工方案第一个零件开始在第一台机器上加工到最后一个零件在第二台机器上结束所需要的总时间是T(S,t)࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值