回溯法——利用解空间树解决0-1背包问题

本文介绍了如何利用回溯法解决01背包问题,详细阐述了解空间树的概念,包括定义问题解空间、确定解空间组织结构,并通过一个实例展示了搜索解空间树的过程,包括约束条件、限界条件和搜索策略。
摘要由CSDN通过智能技术生成

一、简介

01背包典型的解法是动态规划,之前的博客也有介绍,这里就不再赘述。

https://blog.csdn.net/Jayphone17/article/details/102553763

这里有一些回溯法相关的基础理论知识:

https://blog.csdn.net/Jayphone17/article/details/102910824

二、算法设计

(1)定义问题解空间

购物车问题属于典型的01背包问题,问题的解是从n个物品中选择一些物品使其在不超过容量的前提下价值最大。没个物品有且仅有两种状态,要么装进购物车,要么不装进。用0表示不装进购物车,用1表示装进购物车。所以该问题的解是一个n元组,且每个分量的取值为0或者1。

(2)确定解空间组织结构

问题的解空间描述了2^n种可能接,也可以说是n个元素组成的集合所有子集个数。

可见,问题的解空间树为自己输,且是二叉树,解空间树的深度为问题的规模n。如图所示:

(3)搜索解空间树

1.约束条件:

购物车问题的解空间包含2^n种可能解,存在某种或某些物品无法装进购物车的情况,因此需要设置约束条件,判断装进购物车的物品总重量是否超过购物车的重量,如果超出,就是不可行解,否则为可行解。搜索过程不再搜索那些导致不可行解的结点及其孩子结点。

约束条件是:

\sum_{i=1}^{n}wixi\leqslant W

2.限界条件:

购物车01背包问题的可行解可能不止一个,问题的目标是找一个装入购物车的物品总结之最大的可行解,即最优解。因此,需要设置衔接条件来加速找出该最优解的速度。

根据解空间树的组织结构,对于任何一个中间结点z(中间状态),从根结点到z结点的分支所代表的状态(是否已经装进购物车)已经确定,从z到其子孙结点的分支状态是不确定的。

也就是说,如果z在解空间树中所处的层次是t,说明第一个物品到t-1个物品的状态已经是确定了。我们只需要沿着z的分支扩展很容易确定第t种物品的状态。此时,1~t种物品的状态已经确定了。

但是t+1~n种物品的状态还不确定。

我们设置前t种物品的状态是已经装进购物车的物品的总价值,用cp表示。

我们设置t+1~n种物品总价值用rp表示。

因此我们用cp+rp是所有从根结点出发经过中间结点z的可行解的价值上界。

  • 如果价值上界小于或者等于当前搜索到的最优值(用bestp表示,初始值为0)&#x
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值