利用奇异值分解(SVD)进行彩色图片压缩

本文介绍了如何使用奇异值分解(SVD)对彩色图像进行压缩。首先,阐述了如何用数据表示图像,特别是JPG格式的3D张量表示。接着,详细讲解了灰度图像的处理,以及彩色图像压缩的具体步骤,包括通道分离、矩阵压缩和图像重建。最后,通过实验展示了不同奇异值比例下图像的压缩效果。
摘要由CSDN通过智能技术生成

一、怎么用数据表示图像?

    首先,要对一张图像进行压缩处理,那么应该知道怎么用数据来表示一张具体的图像。

    我们选择用Python中的第三方工具库的Pillow来读取一张样例照片,观察参数信息。

    以下是一张lenna.jpg

需要提前安装第三方库pillow

pip install pillow

 安装好之后,将图片放在源文件所在路径下,我们先来读取一下图片信息:

import numpy as np
from PIL import Image

originalImage = Image.open(r'lenna.jpg', 'r')
imageArray = np.array(originalImage)

print(imageArray.shape)
print(imageArray)
(600, 601, 3)
[[[186 102  68]
  [191 107  73]
  [190 106  72]
  ...
  [ 49  35  35]
  [ 54  40  40]
  [ 53  39  39]]

 [[192 108  74]
  [191 107  73]
  [191 107  73]
  ...
  [ 54  40  40]
  [ 50  36  36]
  [ 49  35  35]]

 [[192 108  74]
  [190 106  72]
  [190 106  72]
  ...
  [ 52  38  37]
  [ 52  38  37]
  [ 50  36  35]]

 ...

 [[237 199 186]
  [237 199 186]
  [239 201 190]
  ...
  [168 106  93]
  [166 104  91]
  [169 105  93]]

 [[242 204 191]
  [241 203 190]
  [241 201 191]
  ...
  [170 108  95]
  [178 116 103]
  [174 110  98]]

 [[237 199 186]
  [240 202 189]
  [242 202 192]
  ...
  [161  99  86]
  [171 109  96]
  [170 106  94]]]

Process finished with exit code 0

    我们从结果可以看到,这张图被表示为一个三维的ndarray数组对象:imageArray。

    数组的维度是 600 x 601 x 3 。我们称为3D张量。这个3D张量由图片的三个维度信息组成,

分别为:高度信息、宽度信息、颜色通道信息。

    程序的结果可以看出:这张图片是高度X宽度为600 x 60

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值