OpenCV笔记(三十一)点多边形测试

一、概念

点多边形测试

测试一个点是否在给定的多边形内部,边缘或者外部

二、相关API

cv::pointPolygonTest

pointPolygonTest(
InputArray  contour,// 输入的轮廓
Point2f  pt, // 测试点
bool  measureDist // 是否返回距离值,如果是false,1表示在内面,0表示在边界上,-1表示在外部,true返回实际距离
)

返回数据是double类型

三、处理步骤

  1. 构建一张400x400大小的图片, Mat::Zero(400, 400, CV_8UC1)
  2. 画上一个六边形的闭合区域line
  3. 发现轮廓
  4. 对图像中所有像素点做点 多边形测试,得到距离,归一化后显示。

四、综合例程

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;
int main(int argc, char** argv) {
	const int r = 100;
	Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1);

	vector<Point2f> vert(6);
	vert[0] = Point(3 * r / 2, static_cast<int>(1.34*r));   
	vert[1] = Point(1 * r, 2 * r);
	vert[2] = Point(3 * r / 2, static_cast<int>(2.866*r));   
	vert[3] = Point(5 * r / 2, static_cast<int>(2.866*r));
	vert[4] = Point(3 * r, 2 * r);   
	vert[5] = Point(5 * r / 2, static_cast<int>(1.34*r));

	for (int i = 0; i < 6; i++) {
		line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8, 0);
	}
	
	vector<vector<Point>> contours;
	vector<Vec4i> hierachy;
	Mat csrc;
	src.copyTo(csrc);
	findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
	Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1);
	for (int row = 0; row < raw_dist.rows; row++) {
		for (int col = 0; col < raw_dist.cols; col++) {
			double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)), true);
			raw_dist.at<float>(row, col) = static_cast<float>(dist);
		}
	}

	double minValue, maxValue;
	minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());
	Mat drawImg = Mat::zeros(src.size(), CV_8UC3);
	for (int row = 0; row < drawImg.rows; row++) {
		for (int col = 0; col < drawImg.cols; col++) {
			float dist = raw_dist.at<float>(row, col);
			if (dist > 0) {//内部
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255);
			}
			else if (dist < 0) {//外部
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255);
			} else {//边缘线
				drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist));
				drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist));
			}
		}
	}

	const char* output_win = "point polygon test demo";
	char input_win[] = "input image";
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	namedWindow(output_win, CV_WINDOW_AUTOSIZE);

	imshow(input_win, src);
	imshow(output_win, drawImg);

	waitKey(0);
	return 0;
}
OpenCV是一个强大的计算机视觉库,常用于图像处理和机器学习应用,包括手部检测和轮廓提取。要使用OpenCV识别一只手并进行多边形逼近,你需要执行以下步骤: 1. **导入所需库**: ```cpp #include <opencv2/opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> ``` 2. **读取和预处理图像**: ```cpp cv::Mat img = cv::imread("hand_image.jpg"); // 替换为你的图片路径 cv::cvtColor(img, img, cv::COLOR_BGR2GRAY); // 将图像转为灰度 cv::threshold(img, img, 0, 255, cv::THRESH_BINARY_INV + cv::THRESH_OTSU); // 二值化以便于边缘检测 ``` 3. **手部分割(有时称为“肤色”或“背景减除”)**: - 可能需要训练一个肤色分割模型,例如肤色背景差分法或皮肤色调模型(如HOG+SVM)。如果没有现成的方法,你可能需要手动调整参数或者寻找其他现成的库(如 SkinDetector)。 4. **轮廓检测**: ```cpp std::vector<std::contiguous_vector<cv::Point>> contours; cv::findContours(img, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE); ``` 这一步会找到所有外轮廓,通常手部轮廓会在这些轮廓中。 5. **选择最大面积的轮廓**: 手部轮廓可能是多个相似大小的区域,因此需要选择最大的那个。 ```cpp cv::Rect boundingRect(contours[0]); cv::sort(contours, [](const std::vector<cv::Point>& a, const std::vector<cv::Point>& b) { return boundingRect.size.area() > boundingRect(b).size.area(); }); contours = {contours[0]}; // 保留最大的轮廓 ``` 6. **多边形逼近**: 使用`approxPolyDP()` 函数对轮廓进行近似,得到更简单的多边形表示。 ```cpp double epsilon = contour.arcLength(contours[0], true) * 0.01; // 剪切误差容忍度 std::vector<cv::Point> approxContour; cv::approxPolyDP(contours[0], approxContour, epsilon, true); ``` 7. **绘制结果**: ```cpp cv::drawContours(img, contours, -1, cv::Scalar(255, 0, 0), 2); // 绘制原始轮廓 cv::drawContours(img, {approxContour}, -1, cv::Scalar(0, 255, 0), 2); // 绘制近似的多边形轮廓 cv::imshow("Hand Detection", img); cv::waitKey(0); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值