遥感数据集整理汇总

文章介绍了深度学习在遥感影像分析中的应用,如场景识别、土地利用分类等,强调数据集的质量和规模对模型性能的影响。提到了样本时空迁移、小样本学习和零样本学习等方法,并列举了来自《遥感学报》和Kaggle等来源的遥感样本数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、深度学习应用视角下的数据集介绍

        遥感影像样本应用领域分布主要有场景识别语义分割土地覆盖/土地利用分类变化检测目标检测定量遥感专题要素提取其他

        深度学习本质上属于数据驱动模型,其精度和泛化能力取决于样本数据的规模、标注质量以及是否具有代表性等因素。对于如何充分利用已有样本并充分挖掘未标记样本共同进行模型训练的研究,目前有样本时空迁移小样本学习与零样本学习样本主动发现样本生成等。

图源 《遥感影像样本数据集研究综述》

二、常用遥感样本数据集

 

 图一、图二和图三源自《遥感学报》[2]

 图四和图五源自RSAICP[1]

 图六和图七源自Kaggle[4]

参考资料:

[1]遥感人工智能算法竞赛平台 (北京市遥感信息研究所、中国科学院自动化研究所)

[2]《遥感学报》编辑推荐丨2001-2020经典开源遥感样本集综述 (遥感学报)

[3]冯权泷,陈泊安,李国庆,姚晓闯,高秉博,张连翀.遥感影像样本数据集研究综述[J].遥感学报.2022.26(04).589-605.

https://www.ygxb.ac.cn/thesis/91/25459079/zh/

[4]Find Open Datasets and Machine Learning Projects | Kaggle

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

doll ~CJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值