基于GEE平台的植被覆盖度(FVC)像元二分法计算

文章介绍了植被覆盖度(FVC)的概念及其重要性,讲解了像元二分模型用于计算FVC的基本原理,并提供了基于GoogleEarthEngine的遥感影像处理代码,包括去除云层影响、计算NDVI和FVC的步骤。同时,文章提到了在处理过程中遇到的像素数超限和空间分辨率不一致问题及相应的解决策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、植被覆盖度计算方法

        植被覆盖度FVC(Fractional Vegetation Cover)定义为单位面积内绿色植被冠层垂直投影面积所占比例。FVC是衡量地表植被状况的重要指标之一,也是区域生态系统环境变化的重要指示,对水文、生态、区域变化等都具有重要意义。

        像元二分模型主要对规则、均匀、单一的像元进行植被覆盖度提取。其原理是判定一个单位像元由植被与非植被两部分组成,而遥感影像中光谱波段组合由这两个组成部分权重线性合成,各因子的权重等于总像元中所占的比例,总像元中植被权重的集合与植被覆盖度具有很强的相关性。

        基于遥感影像得到的全部像元信息S由地表植被覆盖信息Sveg和地表土壤覆盖信息Ssoil两部分组成,公式:

S = Sveg + Ssoil                          

        该像元单位中植被覆盖的像元比例大小公式:

Sveg = fc × Sveg(端元)                        

        式中,fc表示在此遥感影像的一个像元中地表植被覆盖信息所占的比例大小。

        该单位像元中非植被覆盖度信息公式:

Ssoil = (1-fc)× Ssoil(端元)                  

        式中,1-fc表示单位像元中的非植被覆盖信息比例。

S = fc×Sveg + (1-fc)×Ssoil              

        即有像元二分模型中的植被覆盖度(FVC)公式:

FVC = (S - Ssoil) / (Sveg - Ssoil)     

        通常,像元二分法的植被覆盖度提取会基于NDVI数据计算,即NDVI代替S,公式:

FVC = (NDVI - NDVIsoil) / (NDVIseg - NDVIsoil)

        通常情况下,NDVIsoil取值与NDVI累计5%值最接近,NDVIveg取值与NDVI累计95%值最接近。不同区域针对不同植被状况可适当调整置信区间。

二、FVC计算代码

// import Puer SHP
var roi = ee.FeatureCollection("users/chuanbaojiangpr/puer_merge");
Map.centerObject(roi,10);
// Area Display
var style ={color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(style),{},"geometry");

// remove cirrus cloud shadow and cloud
function maskS2clouds(image)
{
  var qa  =image.select("QA60");
  var cloudBitMask = 1<<10;
  var cirrusBitMask = 1<<11;
  var mask = qa.bitwiseAnd(cloudBitMask).eq(0).and(qa.bitwiseAnd(cirrusBitMask).eq(0));
  return image.updateMask(mask).divide(10000);
}
// S2 SR_data
var startTime = "2018-11-01";
var endTime = "2019-04-30";
var S2 = ee.ImageCollection("COPERNICUS/S2_SR")
           .filterDate(startTime,endTime)
           .filterBounds(roi)
           .filter(ee.Filter.lt("CLOUDY_PIXEL_PERCENTAGE",10))
           .map(maskS2clouds)
           .select("B2","B3","B4","B8")
           .median()
           .clip(roi);
// min\max:experience threshold
var RGBvis = {min:0,max:0.5,bands:["B4","B3","B2"]};
Map.addLayer(S2,RGBvis,"S2");

// ndvi
var NDVI = S2.expression("(NIR-R)/(NIR+R)",
                        {"R":S2.select(["B4"]),"NIR":S2.select(["B8"])});
// sort pixels(downSample,because maxPixels allows only 10000000)
var threshold = NDVI.reduceRegion({
                     reducer:ee.Reducer.percentile([5,95]),
                     geometry:roi.geometry().bounds(),
                     // must downsample , in order to caculate online
                     scale:110
                    // maxPixels:1e13
});
// debug and get the valName-B8
// print(threshold)
var NDVI_5 = ee.Number(threshold.get("B8_p5"));
var NDVI_95 = ee.Number(threshold.get("B8_p95"));
// var RGBvis = {min:-0.5,max:1};
// Map.addLayer(NDVI,RGBvis,"NDVI");

// FVC
var imgFVC = ((NDVI.subtract(ee.Image(NDVI_5))).divide(ee.Image(NDVI_95).subtract(ee.Image(NDVI_5)))).float();
// normalize FVC 0-1
var FVC = (imgFVC.lt(0).multiply(0))
          .add((imgFVC.gt(0).and(imgFVC.lte(1))).multiply(imgFVC))
          .add(imgFVC.gt(1).multiply(1));
// rank and colormap
var FVC_rank = FVC.where(FVC.lt(0.2),1)
                  .where((FVC.gte(0.2).and(FVC.lt(0.4))),2)
                  .where((FVC.gte(0.4).and(FVC.lt(0.6))),3)
                  .where((FVC.gte(0.6).and(FVC.lt(0.8))),4)
                  .where(FVC.gt(0.8),5);
// Map.addLayer(FVC_rank,{min:1,max:5,palette:["DCDCDC","FFEBCD","99B718","529400","011301"]},"FVC_rank")

// Export FVC_rank
Export.image.toDrive({
  image:FVC_rank,
  description:"FVC_dry_2018",
  folder:"users/chuanbaojiangpr/DataGET/Image",
  fileFormat:"GeoTIFF",
  region:roi,
  scale:110,
  crs:"EPSG:4326"
});

三、计算过程遇到的问题与解决方法

(一)计算像素数超限

         解决方法:①在统计整幅NDVI影像的NDVIsoil、NDVIveg近似值时,采用分块计算处理方法[4];②采用重采样统计处理,降低计算像素的空间分辨率,使其重采样后最大像素在1e13数量内(存在较大误差)。

(二)导出影像数据像素大小(空间分辨率)无法与Sentinel-2 MSI 可见光-近红外10m保持一致

        解决方法:重采样,将影像10m空间分辨率降低至110m。

参考资料:

[1] GEE项目代码整理篇(GEE快速入门) - 知乎

[2] https://developers.google.com/earth-engine/apidocs

[3] 百度百科

[4] GEE:内存超限?将研究区划分成规则的小块运算_gee分块计算__养乐多_的博客-CSDN博客

<think>好的,我需要帮助用户使用Google Earth Engine(GEE)进行植被覆盖度的空间特征分析。首先,我得回顾一下用户提供的引用内容,里面提到了植被覆盖度的定义、应用领域以及估算方法,包括回归模型、混合像分解法和机器学习法。用户现在想知道在GEE中具体怎么操作,特别是空间特征分析的方法教程。 首先,我应该考虑GEE的基本流程。通常,处理步骤包括数据选择、预处理、指数计算、模型应用、空间分析以及结果可视化。用户可能需要从数据开始,比如选择合适的遥感数据集,比如Landsat或MODIS。然后预处理步骤,比如去云、大气校正等,这对确保数据质量很重要。 接下来是计算植被指数。常用的有NDVI,但根据引用中的方法,可能需要使用混合像分解法,比如像二分法。这里需要解释如何将NDVI转换为FVC,可能涉及像二分法的公式:$FVC = \frac{NDVI - NDVI_{soil}}{NDVI_{veg} - NDVI_{soil}}$。用户需要确定NDVI_soil和NDVI_veg的阈值,可能需要经验值或区域特定数据。 然后是空间特征分析。这里可能需要利用GEE的空间统计工具,比如计算均值、标准差,或者使用纹理分析(GLCM)。此外,空间自相关分析,比如Moran's I,可能也是用户需要的,但不确定GEE是否直接支持,可能需要结合其他工具或库。 用户可能还需要导出结果进行进一步分析,比如在GIS软件中处理,或者生成图表。GEE的可视化功能可以帮助生成空间分布图,设置合适的调色板参数。 在教程资源方面,GEE官方文档和示例代码库是基础,另外推荐一些具体的社区教程,比如关于FVC计算的步骤,或者空间分析的案例。需要注意检查链接是否有效,或者是否存在相关的最新教程。 可能的相关问题包括如何选择NDVI的阈值,如何处理不同季节的数据差异,以及如何验证FVC的精度。这些都需要在回答中预见到,并可能作为相关问题提出。 最后,确保回答结构清晰,分步骤说明,并引用提供的参考文献。同时,按照用户要求生成相关问题,帮助用户深入探索。</think>### Google Earth Engine植被覆盖度空间特征分析方法 #### 一、数据准备与预处理 1. **数据集选择**:推荐使用Landsat 8/9或Sentinel-2数据,时间分辨率高且空间分辨率适中(10-30米)。示例加载Landsat 8数据: ```javascript var l8 = ee.ImageCollection("LANDSAT/LC08/C02/T1_L2") .filterDate('2020-01-01', '2023-12-31') .filterBounds(geometry); // geometry为研究区域 ``` 2. **云掩膜与辐射校正**: ```javascript var maskClouds = function(image) { var qa = image.select('QA_PIXEL'); var cloudBitMask = 1 << 3; return image.updateMask(qa.bitwiseAnd(cloudBitMask).eq(0)); }; var l8_filtered = l8.map(maskClouds); ``` #### 二、植被覆盖度计算 1. **NDVI计算**: $$ NDVI = \frac{NIR - Red}{NIR + Red} $$ ```javascript var addNDVI = function(image) { return image.addBands( image.normalizedDifference(['SR_B5','SR_B4']).rename('NDVI') ); }; var l8_ndvi = l8_filtered.map(addNDVI); ``` 2. **像二分法计算FVC**: $$ FVC = \frac{NDVI - NDVI_{soil}}{NDVI_{veg} - NDVI_{soil}} $$ ```javascript var ndvi_soil = 0.2; // 裸土NDVI经验值 var ndvi_veg = 0.8; // 纯植被NDVI经验值 var fvc = l8_ndvi.mean().select('NDVI') .subtract(ndvi_soil) .divide(ndvi_veg - ndvi_soil) .clamp(0,1).rename('FVC'); ``` #### 三、空间特征分析 1. **空间统计量计算**: ```javascript // 区域均值计算 var mean_value = fvc.reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30 }); // 空间标准差 var stdDev = fvc.reduceRegion({ reducer: ee.Reducer.stdDev(), geometry: geometry, scale: 30 }); ``` 2. **纹理特征分析**(使用GLCM): ```javascript var glcm = fvc.glcmTexture({ size: 3, // 窗口大小 average: true // 使用平均值代替原始值 }); print(glcm.select('NDVI_contrast')); // 输出对比度特征 ``` 3. **空间自相关分析**(需结合其他库): ```javascript // 需调用geemap等第三方库实现 var moransI = require('users/gena/packages:stats').MoransI; var weights = ee.Image.constant(1).toArray(); var result = moransI(fvc, weights, geometry, 30); ``` #### 四、可视化与输出 1. **分级渲染**: ```javascript Map.addLayer(fvc, { min:0, max:1, palette: ['white','green'] }, 'FVC'); ``` 2. **时序变化分析**: ```javascript // 生成年际FVC变化曲线 var chart = ui.Chart.image.seriesByRegion({ imageCollection: l8_ndvi.map(function(img){ return img.select('NDVI'); }), regions: geometry, reducer: ee.Reducer.mean(), scale: 30 }); print(chart); ``` #### 五、验证与精度评价 建议结合地面实测数据,使用混淆矩阵验证: $$ 精度 = \frac{TP+TN}{TP+TN+FP+FN} $$ 可通过采样点提取预测值与实测值进行回归分析[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

doll ~CJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值