ENVI计算植被覆盖度(fvc)制图

一、植被覆盖度概念:指植被(包括叶、茎、枝)在地面的垂直投影面积占统计区总面积的百分比。植被的覆盖度可分为高、中高、中、低四种覆盖类型。
二、植被覆盖度等级划分:0~10%(低覆盖度)、10-30%(较低覆盖度)、30-50%(中等覆盖度)、50-70%(较高覆盖度)、70-100%(高覆盖度)
三、实验所需数据:lansat8 OLI 影像、研究区shp文件; 所需软件:ENVI5.3+ArcGIS10.2
四、实验过程
1、下载遥感影像
在这里插入图片描述
2.ENVI处理影像
(1)打开MTL结尾得.txt文件
(2)辐射定标
选择第一个全波段文件
在这里插入图片描述
(3)把“输出存储顺序改为BIL",再点击”应用FLASSH数据“
在这里插入图片描述
右下角为进度条
在这里插入图片描述
(4)大气校正
选择QUAC快速大气校正
在这里插入图片描述

在这里插入图片描述
耐心等待
在这里插入图片描述
(5)计算NDVI方法一:
https://www.bilibili.com/video/BV1fm421E7BF/?spm_id_from=333.880.my_history.page.click
在这里插入图片描述
在这里插入图片描述
(6)在NDVI图层”右击“-”快速统计“
在这里插入图片描述
记事本打开NDVI.HDR文件,在里面添加红框内容
在这里插入图片描述
计算NDVI方法二:
使用该公式计算:【利用ENVI进行图像预处理,计算NDVI值,提取植被生成专题地图】 https://www.bilibili.com/video/BV1Gv4y1R7HZ/?share_source=copy_web&vd_source=f031523f1d3f2996d07c016cb872b88b
NDVI=float(b5-b4) / float(b5+b4)
(7)使用波段计算器计算FVC
FVC =(b1 It NDVIsoil)*0+(b1 gt NDVIveg)1+(b1 ge NDVIsoil and b1 le NDVIveg)((b1-NDVIsoil)/(NDVIveg-NDVIsoil))
NDVIsoil取5%处的值,NDVIveg取95%处的值。
在这里插入图片描述
在这里插入图片描述
可以看出FVC是在0-1之间的,符合要求
在这里插入图片描述
最后右击导出为tiff
在这里插入图片描述
(8)在 ARCGIS中打开黄山FVC.tif文件,搜索”按掩膜提取“,裁剪出研究区的影像即可
在这里插入图片描述
在这里插入图片描述

### ENVI计算 FVC 的公式及相关方法 在遥感领域,植被覆盖度(Fractional Vegetation Cover, FVC)是一个重要的参数,用于描述植被的空间分布及其覆盖率。通过像元二分模型可以有效估计 FVC 值[^1]。 #### 1. 像元二分模型的理论基础 像元二分模型假设每个像元由植被和土壤组成,其反射率可以通过线性混合模型表示。具体而言,该模型基于归一化差值植被指数(Normalized Difference Vegetation Index, NDVI),定义如下: \[ \text{NDVI} = \frac{\text{(NIR - Red)}}{\text{(NIR + Red)}} \] 其中,`NIR` 表示近红外波段反射率,`Red` 表示红光波段反射率。NDVI 是衡量植被健康程度的重要指标之一[^2]。 #### 2. FVC 计算公式 根据像元二分模型,FVC计算公式可表达为: \[ \text{FVC} = \frac{\text{NDVI} - \text{NDVI}_{\min}}{\text{NDVI}_{\max} - \text{NDVI}_{\min}} \] - \( \text{NDVI}_{\min} \): 裸土或无植被区域对应的最小 NDVI 值; - \( \text{NDVI}_{\max} \): 完全覆盖植被区域对应的最大 NDVI 值; 这两个阈值通常需要依据实际研究区的数据特征进行设定或校准[^3]。 #### 3. 实验流程概述 为了在 ENVI 中实现上述公式的应用,以下是典型的操作步骤说明: - **数据准备**: 下载并导入 Landsat 或其他多光谱遥感影像至 ENVI 平台。 - **预处理**: - 辐射定标:将数字化数值转换为物理量级。 - 大气校正:消除大气散射等因素的影响。 - **NDVI 提取**: 利用 ENVI 工具箱中的 Band Math 功能提取 NDVI 数据。 - **FVC 计算**: 使用 Band Math 输入自定义公式完成 FVC计算[^4]。 ```python # 示例 Python 伪代码展示如何手动实现 FVC 计算逻辑 def calculate_fvc(ndvi_data, ndvi_min, ndvi_max): fvc = (ndvi_data - ndvi_min) / (ndvi_max - ndvi_min) return np.clip(fvc, 0, 1) # 将结果限制在 [0, 1] 区间内 ``` #### 4. 结果验证与可视化 最终得到的 FVC 图层可通过 ArcGIS 进一步分析或制图,以便更直观地展现不同区域的植被覆盖情况。同时,也可以按照既定标准对 FVC 数值进行分级显示,例如低覆盖度(0%-10%)、中等覆盖度(30%-50%)以及高覆盖度(70%-100%)等类别。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值